Hostname: page-component-7bb8b95d7b-qxsvm Total loading time: 0 Render date: 2024-09-13T08:10:18.275Z Has data issue: false hasContentIssue false

Allophane-like materials in the weathered zones of Silurian phosphate-rich veins from Santa Creu d'Olorda (Barcelona, Spain)

Published online by Cambridge University Press:  09 July 2018

M. C. Moro
Affiliation:
Departamento de Geología de la Universidad de Salamanca. 37008 Salamanca, Spain
M. L. Cembranos*
Affiliation:
Departamento de Geología de la Universidad de Salamanca. 37008 Salamanca, Spain
A. Fernandez
Affiliation:
Departamento de Geología de la Universidad de Salamanca. 37008 Salamanca, Spain

Abstract

Allophane-like materials occur in the weathered zones of the phosphate-rich veins hosted in Silurian metasediments of the Catalonian Coastal Ranges. These metasediments also host sulphide and phosphate sedimentary mineralizations. Mineralogical and geochemical investigations of the allophanic samples indicate that they comprise Si-rich allophane, with a molar SiO2/Al2O3 ratio ranging between 1.19 and 2.23, with amorphous Al-(Ca) phosphate and hydroxylapatite as major minerals, and minor goethite and quartz. It is assumed that allophane, amorphous Al-(Ca) phosphate and hydroxylapatite come from the reaction of acid solutions, released during the weathering of sulphide interbedded in black shales, with phosphate-rich veins and volcano- sedimentary host rocks. Silica-alumina gels were deposited in fissures and cavities left by a previous dissolution of the phosphate-rich veins. Later the phosphate minerals filled the conchoidal microfractures and shrinkage microcracks of the allophane.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Blanchard, F.N. (1971) Thermal analysis of crandallite. Q. J. Florida Acad. Sci. 34-1, 1–9.Google Scholar
Boskey, A.L. & Posner, A.S. (1976) Formation of hydroxylapatite at low supersaturation. J. Phys. Chem. 80, 40–45.Google Scholar
Campbell, A.S., Mitchell, B.D. & Bracewell, J.M. (1968) Effects of particle size, pH and organic matter on the thermal analysis of allophane. Clay Miner. 7, 451–454.Google Scholar
Camprubi, A., Costa, F. & Melgarejo, J.C. (1994) Mineralizaciones de fosfatos férrico-alumínicos de Gavá (Catalunya): tipología. Bol. Geol. Min. 105-5, 444–453.Google Scholar
Farmer, V.C. (editor) (1974) The Infrared Spectra of Minerals. Monograph 4, Mineralogical Society, London.Google Scholar
Fernández-Martos, J.G. (1980) Estudio del Paleozoico al oeste del rio Llobregat entre Gavá y Pallejá. PhD thesis, Univ. Autonoma Barcelona, Spain.Google Scholar
Fields, M. & Claridge, G.G.C. (1975) Allophane. Pp. 351–394 in: Soil Components. 2. Inorganic Components (Gieseking, J.E., editor). Springer- Verlag, New York.Google Scholar
Hashimoto, I. & Jackson, M.X. (1960) Rapid dissolution of allophane and kaolinite-halloysite after dehydration. Clays Clay Miner. 7, 102–113.Google Scholar
Henmi, T. (1979) The occurrence of allophane in a stream-deposit from Ehime prefecture, Japan. Clay Miner. 14, 333–338.Google Scholar
Julivert, M. & Duran, H. (1990) Paleozoic stratigraphy of the Central and Northern part of the Catalonian Coastal Ranges (NE Spain). Ada Geol. Hisp. 25, 3–12.Google Scholar
Lowe, D.J. (1986) Controls on the rates of weathering and clay mineral genesis in airfall tephras: A review and New Zealand Case study. Pp. 265–330 in: Rates of Chemical Weathering of Rocks and Minerals (Coleman, S.M. & Dethier, D.P., editors). Academic Press, New York.Google Scholar
Manly, R.L. (1950) D.t.a. of certain phosphates. Am. Miner. 35, 108–115.Google Scholar
Melgarejo, J.C. (1992) Estudio geológico y metalogenético del Paleozoico del sur de las Cordilleras Costeras Catalanas. Memorias ITGE, 103.Google Scholar
Miyauchi, N. & Aomine, S. (1966) Mineralogy of gel-like substance in the pumice bed in Kanuma and Kitakami districts. Soil Sci. Plant Nutr. (Tokyo), 12, 187–190.CrossRefGoogle Scholar
Ossaka, J. (1960) On the hydro-alumina silicate minerals from Mt. Asama. Adv. Clay Sci. 2, 339–349.Google Scholar
Parfitt, R.L. (1990) Allophane in New Zealand–A review. Aust. J. Soil Res. 28, 343–360.Google Scholar
Parfitt, R.L. & Webb, T.W. (1984) Allophane in some South Island yellow-brown shallow and stony soils and high country and upland yellow-brown earths. N.Z. J. Sci. 27, 37–40.Google Scholar
Parfitt, R.L. & Wilson, A.D. (1985) Estimation of allophane and halloysite in three sequences of volcanic soils, New Zealand. Pp. 1–8 in: Volcanic Soils, Weathering and Landscape Relationships of Soils on Tephra and Basalt (Fernandez Caldas, E. & Yaalon, D.H., editors). Catena Verlag, Cremlingen, Germany.Google Scholar
Pérez del Villar, L., Moro, M.C. & Cembranos MX. (1992) Allophane in weathered zones of barite ore deposits (Vide de Alba and San Blas, Zamora, Spain): Mineralogy and genesis. Clay Miner. 27, 309–323.CrossRefGoogle Scholar
Russell, J.D., McHardy, W.J. & Fraser, A.R. (1969) Imogolite: a unique aluminosilicate. Clay Miner. 8, 87–99.CrossRefGoogle Scholar
Stevens, K.F. & Vucetich, G.C. (1985) Weathering of Upper Quaternary tephras in New Zealand. 2, Clay minerals and their climatic interpretation. Chem. Geol. 53, 237–247.CrossRefGoogle Scholar
Van der Marel, H.W. & Beutelspacher, H. (1976) Atlas of Infrared Spectroscopy of Clay Minerals and their Admixtures. Elesevier, Amsterdam.Google Scholar
Wada, K. (1977) Allophane and imogolite. Pp. 603-638 in: Minerals in Soil Environments. (Dixon, J.B. & Weed, S.B., editors). Soil Science Society of America, Madison, Wisconsin.Google Scholar
Wada, K. & Harward, M.E. (1974) Amorphous clay constituents of soils. Adv. Agron. 26, 211–260.Google Scholar
Winand, L. & Dallemagne, M.J. (1962) Hydrogen bonding in the calcium phosphates. Nature, 193, 368–370.Google Scholar
Yoshinaga, N. & Aomine, S. (1962a) Allophane in some Ando Soils. Soil Sci. Plant. Nutr. 8, 6–13.Google Scholar
Yoshinaga, N. & Aomine, S. (1962b) Imogolite in some Ando Soils. Soil Sci. Plant. Nutr. 8, 22–29.Google Scholar