Hostname: page-component-7479d7b7d-pfhbr Total loading time: 0 Render date: 2024-07-12T04:20:12.893Z Has data issue: false hasContentIssue false

A comparative X-ray diffraction, Mössbauer and NMR spectroscopic study of the vermiculites from Béni Bousera, Morocco and Palabora, Republic of South Africa

Published online by Cambridge University Press:  09 July 2018

R. Badreddine
Affiliation:
Laboratory of Mineralogy, University of Liège, B18, B-4000 Sart-Tilman, Belgium
D. Vandormael
Affiliation:
Instituteof Physics, University of Liège, B5, B-4000 Sart-Tilman, Belgium
A. -M. Fransolet
Affiliation:
Laboratory of Mineralogy, University of Liège, B18, B-4000 Sart-Tilman, Belgium
G. J . Long
Affiliation:
Department of Chemistry, University of Missouri-Rolla, Rolla, MO 65409-0010, USA
W. E. E. Stone
Affiliation:
Section de Physico-Chimie Minérale, Musée Royal de l'Afrique Centrale, Campus de la Plaine, ULB, CP232, Boulevard du Triomphe, B-1050 Bruxelles, Belgium
F. Grandjean*
Affiliation:
Instituteof Physics, University of Liège, B5, B-4000 Sart-Tilman, Belgium

Abstract

Five vermiculite samples collected from Béni Bousera, Morocco and four from Palabora, South Africa were investigated by X-ray diffraction, chemical analysis, 57Fe Mössbauer spectroscopy, and 27Al magic angle spinning nuclear magnetic resonance. The X-ray diffraction studies indicate that all vermiculites have very similar crystallographic parameters. The chemical analyses and the NMR spectra indicate that the Béni Bousera vermiculites contain Al3+ cations in both octahedral and tetrahedral sheets and the Palabora vermiculites contain Al3+ in the tetrahedral sheet. The Mössbauer spectra indicate that the Béni Bousera vermiculites contain more Fe2+ cations than the Palabora vermiculites and do not contain tetrahedral Fe3+ cations. The different cation compositions and distribution in the two sets of vermiculites may result from different parent minerals, i.e. chlorite in the case of Béni Bousera and phlogopite in the case of Palabora, and different genetic processes, i.e. weathering in Béni Bousera and hydrothermal alteration in Palabora.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alcover, J.F., Gatineau, L. & Mering, J. (1973) Exchangeable cation distribution in nickel- and magnesium-vermiculites. Clays and Clay Minerals, 21, 131136.Google Scholar
Badreddine, R. (1998) Caractérisation cristallochimique des vermiculites de Palabora, République d’Afrique du Sud, et des Béni Bousera, Maroc.PhD thesis, Univ. Liège, Belgium.Google Scholar
Badreddine, R., Grandjean, F., Vandormael, D., Fransolet, A.-M. & Long, G.J. (2000) An iron-57 Mössbauer spectral study of vermiculitization in the Palabora complex, Republic of South Africa. Clay Minerals, 35, 653663.Google Scholar
Basset, W.A. (1959) The origin of the vermiculite deposit at Libby, Montana. American Mineralogist, 44, 282299.Google Scholar
Basset, W.A. (1963) The geology of vermiculite occurrences. Clays and Clay Minerals, 10, 6169.Google Scholar
Boettcher, A.L. (1966) Vermiculite, hydrobiotite, and biotite in the Rainy Creek igneous complex near Libby, Montana. Clay Minerals, 6, 283296.CrossRefGoogle Scholar
Burnham, C.W. (1991) LCLSQ version 8.4, least-squares refinement of crystallographic lattice parameters. Department of Earth and Planetary Sciences, Harvard University, USA.Google Scholar
Buurman, P., Meijer, E.L. & Van Wijck, J.H. (1988) Weathering of chlorite and vermiculite in ultramafic rocks of Cabo Ortegal, northwestern Spain. Clays and Clay Minerals, 36, 263269.Google Scholar
Coey, J.M.D. (1984) Mössbauer spectroscopy of silicate minerals. Pp. 443510 in: Mössbauer Spectroscopy Applied to Inorganic Chemistry Vol. 1 (Long, G.J., editor). Plenum Press, New York, USA.Google Scholar
de la Calle, C. & Suquet, H. (1988) Vermiculite. Pp. 455496 in. Hydrous Phyllosilicates (Exclusive of Micas) (Bailey, S.W., editor ). Reviews in Mineralogy, 19, Mineralogical Society of America, Washington, D.C.Google Scholar
de la Calle, C., Suquet, H. & Pons, C.H. (1988) Stacking order in a 14.30 Å Mg-vermiculite. Clays and Clay Minerals, 36, 481490.Google Scholar
Dyar, M.D. (1987) A review of Mössbauer data on trioctahedral micas: Evidence for tetrahedral Fe3+ and cation ordering. American Mineralogist, 72, 102112.Google Scholar
Engelhardt, G. & Michel, D. (1985) High-resolution Solid-State NMR of Silicates and Zeolites. John Wiley, Chichester, UK.Google Scholar
Foster, M.D. (1963) Interpretation of the composition of vermiculites and hydrobiotites. Clays and Clay Minerals, 10, 7089.Google Scholar
Gevers, T.W. (1949) Vermiculite at Loolekop, Palabora, North East Transvaal. Transactions and Proceedings of the Geological Society of South Africa, LI, 133178.Google Scholar
Kornprobst, J. (1966) A propos des péridotites du massif des Béni-Bouchera (Rif septentrional, Maroc). Bulletin de la Sociétéfrançaise de Minéralogie et Cristallographie, 89, 399404.Google Scholar
Kornprobst, J. (1969) Le massif ultrabasique des Béni Bouchera (Rif interne, Maroc): Etude des péridotites de haute température et de haute pression, et des pyroxénolites, à grenat ou sans grenat, qui leur sont associées. Contributions to Mineralo gy and Petrology, 23, 283322.Google Scholar
Mathieson, A.M. & Walker, G.F. (1954) Crystal structure of magnesium-vermiculite. American Mineralogist, 39, 231255.Google Scholar
Mikhailov, N.P. (1975) Données nouvelles sur la pétrologie et la structure interne du massif ultramafique des Ben-Bouchera (Rif paléozoïque, Maroc du Nord). Mines et Géologie, 38, 3142.Google Scholar
Moon, H.-S., Song, Y. & Lee, S.Y. (1994) Supergene vermiculitization of phlogopite and biotite in ultramafic and mafic rocks, Central Korea. Clays and Clay Minerals, 42, 259268.Google Scholar
Müller, D., Gessner, W., Behrens, H.J. & Scheler, G. (1981) Determination of the aluminum coordination in aluminum-oxygen compounds by solid-state highresolution 27Al NMR. Chemical Physics Letters, 79, 5962.Google Scholar
Nicolas, A. & Jackson, E.D. (1972) Répartition en deux provinces des péridotites des chaônes alpines longeant la Méditerranée: implications géotectoniques. Schweizerische Mineralogische und Petrographische Mitteilungen, 52, 479495.Google Scholar
Norrish, K. (1973) Factors in the weathering of micas to vermiculite. Proceedings of the International Clay Conference, Madrid 1972, 417432.Google Scholar
Proust, D. (1982) Supergene alteration of metamorphic chlorite in an amphibolite from Massif Central, France. Clay Minerals, 17, 159173.CrossRefGoogle Scholar
Rancourt, D.G., Dang, M.-Z. & Lalonde, A.E. (1992) Mössbauer spectroscopy of tetrahedral Fe3+ in trioctahedral micas. American Mineralogist, 77, 3443.Google Scholar
Ungethüm, H. (1965) Eine neue Methode zur Bestimmung von Eisen (II) in Gesteinen und Mineralen, insbesondere auch in bitumenhaltigen Proben. Zeitschrift für angewandte Geologie, 11, 500505.Google Scholar
Woessner, D.E. (1989) Characterization of clay minerals by 27Al nuclear magnetic resonance spectroscopy. American Mineralogist, 74, 203215.Google Scholar