Hostname: page-component-7bb8b95d7b-qxsvm Total loading time: 0 Render date: 2024-09-12T09:19:58.372Z Has data issue: false hasContentIssue false

Diagenesis of trioctahedral clays in a Miocene to Pleistocene sedimentary–magmatic sequence in the Dead Sea Rift, Israel

Published online by Cambridge University Press:  09 July 2018

A. Sandler*
Affiliation:
Geological Survey of Israel, 30 Malkhe Yisrael St., Jerusalem 95501, Israel
Y. Nathan
Affiliation:
Geological Survey of Israel, 30 Malkhe Yisrael St., Jerusalem 95501, Israel
Y. Eshet
Affiliation:
Geological Survey of Israel, 30 Malkhe Yisrael St., Jerusalem 95501, Israel
M. Raab
Affiliation:
Geological Survey of Israel, 30 Malkhe Yisrael St., Jerusalem 95501, Israel

Abstract

The diagenetic evolution of clay minerals in a 4249 m sedimentary-magmatic sequence of the Zemah-1 drillhole in the Dead Sea Rift, Israel, was studied, mainly by X-ray diffraction (XRD). The parallel maturation of the organic matter was estimated by the thermal alteration index (TAI) method. Both parameters follow a progressive diagenesis with depth. The original clays, now encountered only at shallow depths, were dioctahedral, and mostly detrital. They transformed into Mg-rich trioctahedral clays starting with a saponite-dominated assemblage, followed by a saponite, ordered chlorite-smectite (C-S), and chlorite assemblage, and finally by a saponite, corrensite, chlorite and talc assemblage. Significant mineralogical composition gaps occur between saponite to corrensite and corrensite to chlorite. Short-range variations within the most evolved assemblage are controlled by bulk-rock composition. Depths of first occurrence and disappearance of minerals indicate a much higher geothermal gradient in the past whereas the TAI values suggest an even higher palaeogradient of ∼708C km–1.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bailey, S.W. (1980) Structures of layer silicates. Pp. 1124 in. Crystal Structure of Clay Minerals and their X-ray Identification (Brindley, G.W. & Brown, G., editors). Monograph 5. Mineralogic al Society, London.Google Scholar
Bailey, S.W. (1982) Nomenclature for regular interstratifications. Am. Miner. 67, 394398.Google Scholar
Banfield, J.F., Jones, B.F. & Veblen, D.R. (1991) An AEM-TEM study of weathering and diagenesis, Abert Lake, Oregon; II, Diagenetic modification of the sedimentary assemblage. Geochim. Cosmochim. Acta, 55, 27952810.CrossRefGoogle Scholar
Barrenechea, J.F., Rodas, M., Frey, M., Alonso-Azcarate, J. & Mas, J.R. (2000) Chlorite, corrensite and chlorite-mica in Late Jurassic fluvio-lacustrine sediments of the Cameros basin of Northeastern Spain. Clays Clay Miner. 48, 256265.CrossRefGoogle Scholar
Beaufort, D., Baronnet, A., Lanson, B. & Meunier, A. (1997) Corrensite: A single phase or a mixed-layer phyllosilicate in the saponite-to-chlorite conversion series? A case study of Sancerre-Couy deep drill hole (France). Am. Miner. 82, 109124.CrossRefGoogle Scholar
Bein, A., Goldberg, M., Aizenshtat, & Shraga, Y. (1982) The origin of gases in the northern Jordan Valley, Israel and its implication for further oil exploration. Geol. Surv. Isr. Current Res. 1982, 5–7.Google Scholar
Besson, G. & Drits, V.A. (1997) Refined relationships between chemical composition of dioctahedral finegrained mica minerals and their infrared spectra within the OH stretching region. Part I: Identification of the OH strecthing bands. Clays Clay Miner. 45, 158169.CrossRefGoogle Scholar
Bjørlykke, K. & Aagard, P. (1992) Clay minerals in North Sea sandstones. SEPM Spec. Publ. 47, 6580.Google Scholar
Bodine, M.W. & Madsen, B.M. (1987) Mixed-layer chlorite/smectite from a Pennsylvanian evaporite cycle, Grand County, Utah. Proc. Int. Clay Conf., Denver, 8593.Google Scholar
Braun, D. (1992) The geology of the Afiqim area. MSc thesis. Hebrew Univ., Jerusalem, Israel (in Hebrew, English Abstr.).Google Scholar
Brigatti, M.F. & Poppi, L. (1984) Crystal chemistry of corrensite : a review. Clays Clay Miner. 21, 207212.Google Scholar
Chang, H.K., Mackenzie, F.T. & Schoonmaker, J. (1986) Comparison between the diagenesis of dioctahedral and trioctahedral smectite, Brazilian offshore basins. Clays Clay Miner. 34, 407423.CrossRefGoogle Scholar
Dunoyer de Segonzac, G. (1970) The transformation of clay minerals during diagenesis and low-grade metamorphism: a review. Sedimentology, 15, 281346.CrossRefGoogle Scholar
Evans, B.W. & Guggenheim, S. (1988) Talc, pyrophyllite, and related minerals. Pp. 225294 in. Hydrous Phyllosilicates (exclusive of Micas). (Bailey, S.W., editor). Reviews in Mineralogy 19. Mineralogical Society of America, Washington D.C. CrossRefGoogle Scholar
Farmer, V.C. (1974) The layer silicates, Pp. 331363 in. The Infrared Spectra of Minerals (Farmer, V.C., editor). Monograph, 4. Mineralogical Society, London.CrossRefGoogle Scholar
Garfunkel, Z. (1981) Internal structure of the Dead Sea leaky transform (rift) in relation to plate kinematics. Tectonophysics, 80, 81108.CrossRefGoogle Scholar
Graef, F., Singer, A., Stahr, K. & Jahn, R. (1997) Genesis and diagenesis of paleosols from Pliocene volcanics on the Golan Heights. Catena, 30, 149167.CrossRefGoogle Scholar
Gu¨ven, N. (1988) Smectites. Pp. 497559 in. Hydrous Phyllosilicates (exclusive of Micas) (Bailey, S.W., editor). Reviews in Mineralogy, 19. Mineralogical Society of America, Washington D.C. CrossRefGoogle Scholar
Hay, R.L., Guldman, S.G., Mathews, J.C., Lander, R.H., Duffin, M.E. & Kyser, T.K. (1991) Clay mineral diagenesis in core KM03 of Searles Lake, California. Clays Clay Miner. 39, 8496.CrossRefGoogle Scholar
Hillier, S. (1993) Origin, diagenesis, and mineralogy of chlorite minerals in Devonian lacustrine mudrocks, Orcadian Basin, Scotland. Clays Clay Miner. 41, 240259.CrossRefGoogle Scholar
Hood, A., Gutjahr, C.M. & Heacock, R.L. (1975) Organic metamorphism and the generation of petroleum. Am. Assoc. Petrol. Geol. Bull. 59, 986996.Google Scholar
Horowitz, A. (1987) Palynological evidence for the age and rate of sedimentation along the Dead Sea Rift, and structural implications. Tectonophysics, 141, 107115.CrossRefGoogle Scholar
Inoue, A. & Utada, M. (1991) Smectite-to-chlorite transformation in thermal metamorphism of volcaniclastic rocks at Kamikita area, northern Honshu, Japan. Am. Miner. 76, 628640.Google Scholar
Jones, B.F. (1986) Clay mineral diagenesis in lacustrine sediments. U.S.G.S. Bull. 1578, 291300.Google Scholar
Kossovskaya, A.G. & Drits, V.A. (1970) The variability of micaceous minerals in sedimentary rocks. Sedimentology, 15, 83101.CrossRefGoogle Scholar
Ku¨bler, B. (1973) La corrensite, indicateur possible de sedimentation et du degre de transformation d’un sediment. Bull. Centre Rech. Pau-S.N.P.A. 7, 543556.Google Scholar
Levitte, D. & Olshina, A. (1985) Isotherm and geothermal gradient maps of Israel. Geol. Surv. Isr. Rep. GSI/60/ 84, 94 p.Google Scholar
Marcus, E. & Slager, J. (1985) The sedimentarymagmatic sequence of the Zemah-1 well (Jordan- Dead Sea Rift, Israel) and its emplacement in time and space. Isr. J. Earth Sci. 34, 110.Google Scholar
Mittlefehldt, D.W. & Slager, Y. (1986) Petrology of the basalts and gabbros from the Zemah-1 drill hole, Jordan Rift Valley. Isr. J Earth Sci. 35, 1022.Google Scholar
Nathan, Y., Shoval, S., Sandler, A., Charrach, J., Rappaport, A. & Gur, A. (1990) Clays of Mount Sedom. Geol. Surv. Isr. Rep. GSI/44/90, 14 p.Google Scholar
Nathan, Y., Shoval, S. & Sandler, A. (1992) Dead Sea Clays. Geol. Surv. Isr. Rep. GSI/21/92 (in Hebrew, English Abstr.), 25 p.Google Scholar
Newman, A.C.D. & Brown, G. (1987) The chemical constitution of clays. Pp. 1128 in. Chemistry of Clays and Clay Minerals (Newman, A.C.D., editor). Mineralogical Society Monograph 6. Longman, London.Google Scholar
Padan, A., Weaver, C.E. & Wampler, J.M. (1984) The formation of evaporitic clay minerals, Paradox Formation, Utah. Clay Miner. Conf., Prog. Abstr. p. 94.Google Scholar
Ramseyer, K., Boles, J.R. & Lichtner, P.C. (1992) Mechanism of plagioclase albitization. J. Sed. Pet. 62, 349356.Google Scholar
Reynolds, R.C. (1980) Interstratified clay minerals. Pp. 249303 in. Crystal Structures of Clay Minerals and their X-ray Identification (Brindley, G.W. & Brown, G., editors). Monograph 5, Mineralogical Society, London.CrossRefGoogle Scholar
Reynolds, R.C. (1985) NEWMOD, a computer program for the calculation of one-dimensional diffraction patterns of mixed-layered clays. Reynolds, R.C., 8 Brook Rd., Hanover, NH, USA.Google Scholar
Reynolds, R.C. (1988) Mixed layer chlorite minerals Pp. 601629 in. Hydrous Phyllosilicates (exclusive of Micas) (Bailey, S.W., editor ). Revi ews in Mineralogy, 19. Mineralogical Society of America, Washington, D.C.CrossRefGoogle Scholar
Reynolds, R.C. & Hower, J. (1970) The nature of interlayering in mixed-layer illite-montmorillonites. Clays Clay Miner. 18, 25–3.CrossRefGoogle Scholar
Robinson, D. & Bevins, R.E. (1994) Mafic phyllosilicates in low-grade metabasites: Characterization using deconvolution analysis. Clay Miner. 29, 223237.CrossRefGoogle Scholar
Saigal, G.C., Morad, S., Bjørlykke, K., Egeberg, P.K. & Aagard, P. (1988) Diagenetic albitization of detrital K-feldspar in Jurassic, Lower Cretaceous and Tertiary clastic reservoirs from off-shore Norway, I. Textures and origin. J. Sed. Pet. 58, 10031013.Google Scholar
Sandler, A. & Nathan, Y. (1995) Burial diagenesis of clays in Sedom 1 and Amiaz 1 sediments, southern Dead Sea. Isr. Geol. Soc. Ann. Meet. Abstr. p. 95.Google Scholar
Shaliv, G. (1991) Stages in the tectonic and volcanic history of Neogene basin in northern Israel. Geol. Surv. Isr. Rep. GSI/11/91, Jerusalem, (in Hebrew, English Abstr.), p. 102.Google Scholar
Shau, Y.-H. & Peacor, D.R. (1992) Phyllosilicates and hydrothermally altered basalts from DSDP Hole 504B, Leg 83 a TEM and AEM study. Contrib. Mineral. Petrol. 112, 119133.CrossRefGoogle Scholar
Singer, A., Gal, M. & Banin, A. (1972) Clay minerals in recent sediments of Lake Kinneret (Tiberias), Israel. Sed. Geol. 8, 289308.CrossRefGoogle Scholar
Smart, G. & Clayton, T. (1985) The progressive illitization of interstratified illite-smectite from Carboniferous sediments of northern England and its relationship to organic maturity indicators. Clay Miner. 20, 455466.CrossRefGoogle Scholar
Staplin, F.L. (1975) Interpretation of thermal history from color of particulate organic matter – a review. Pp. 918 in: Palynology I, Proc. 8th Ann. Meet. Am. Assoc. Strat. Palynol., Houston, 1975.Google Scholar
Sweeney, J.J. & Burnham, A.K. (1990) Evaluation of a simple model of vitrinite reflectance based on chemical kinetics. Am. Assoc. Petrol. Geol. Bull. 74, 15591570.Google Scholar
Velde, B. (1985) Clay Minerals: A Physico-Chemical Explanat ion of their Occurr ence. Elsevier, Amsterdam.Google Scholar
Velde, B. & Lanson, B. (1993) Comparison of IS transformation and maturity of organic matter at elevated temperatures. Clays Clay Miner. 41, 178183.CrossRefGoogle Scholar
Walker, J.R. (1993) Chlorite polytype geothermometry. Clays Clay Miner. 41, 260267.CrossRefGoogle Scholar
Weaver, C.E. (1989) Clays, Muds, and Shales. Developments in Sedimentology, 44. Elsevier, Amsterdam.Google Scholar
Weaver, C.E. & Pollard, L.D. (1973) The Chemistry of Clay Minerals. Elsevier, Amsterdam.Google Scholar