Hostname: page-component-7bb8b95d7b-s9k8s Total loading time: 0 Render date: 2024-09-17T06:22:41.289Z Has data issue: false hasContentIssue false

Diagenetic to low-grade metamorphic evolution of clay mineral assemblages in Palaeozoic to early Mesozoic rocks of the Eastern Taurides, Turkey

Published online by Cambridge University Press:  09 July 2018

Ö. Bozkaya
Affiliation:
Department of Geological Engineering, Cumhuriyet University, 58140 Sivas, Turkey
H. Yalçin
Affiliation:
Department of Geological Engineering, Cumhuriyet University, 58140 Sivas, Turkey

Abstract

Palaeozoic to early Mesozoic rocks of both autochthonous and allochthonous units of the Eastern Tauride Belt have different textural and mineralogical features related to their varying deposition regimes and thermal histories. The Devonian and Carboniferous formations in the allocthonous units have anchizonal to epizonal grades of metamorphism, whereas those of the autochthon experienced only early diagenetic conditions. A well-developed penetrative slaty cleavage is also found in Devonian formations of the allocthonous units, which is not observed in equivalent rocks of the autochthon. Phyllosilicates of the uncleaved diagenetic assemblages consist mainly of illite, chlorite, kaolinite, mixed-layer illite-smectite, chlorite-vermiculite and chloritesmectite, whereas in addition to these, metamorphic allochthonous units contain some index minerals such as dickite, paragonite, Na and K mica, pyrophyllite, stilpnomelane and chloritoid. These latter assemblages show a higher degree of textural and mineralogical maturation and lower b cell dimensions than the autochthonous rocks, suggesting that they originated in a relatively high heat flow basin such as an extensional setting.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Árkai, P. (1991) Chlorite crystallinity: an empirical approach and correlation with illite crystallinity, coal rank and mineral facies as exemplified by Palaeozoic and Mesozoic rocks of northeast Hungary. Journal of Metamorphic Geology, 9, 723–734.CrossRefGoogle Scholar
Awan, M.A. & Woodcock, N.H. (1991) A white mica crystallinity study of the Berwyn Hills, North Wales. Journal of Metamorphic Geology, 9, 765–773.CrossRefGoogle Scholar
Bailey, S.W. (1980) Summary of recommendations of AIPEA nomenclature committee on clay minerals. American Mineralogist, 65, 1–7.Google Scholar
Bailey, S.W. (1988) X-ray diffraction identification of the polytypes of mica, serpentine, and chlorite. Clays and Clay Minerals, 36, 193–213.CrossRefGoogle Scholar
Bartier, D., Buatier, M., López, M., Potdevin, J.L., Chamley, H. & Arostegui, J. (1998) Lithological control on the occurrence of chlorite in the diagenetic Wealden complex of the Bilbao anticlinorium (Basco-Cantabrian Basin, Northern Spain). Clay Minerals, 33, 317–332.CrossRefGoogle Scholar
Bevins, R.E. & Robinson, D. (1988) Short paper: Low grade metamorphism of the Welsh Basin Lower Palaeozoic succession: an example of diastathermal metamorphism. Journal of the Geological Society, London, 145, 363366.CrossRefGoogle Scholar
Bozkaya, Ö. & Yalçm, H. (2000) Very low-grade metamorphism of Upper Palaeozoic—Lower Mesozoic sedimentary rocks related to burial and thrusting in the Central Taurus Belt, Konya, Turkey. International Geology Review, 42, 353–367.CrossRefGoogle Scholar
Bozkaya, Ö. & Yalçm, H. (2004) New mineralogic data and implications for the tectono-metamorphic evolution of the Alanya Nappes, central Tauride Belt, Turkey. International Geology Review, 46, 347–365.CrossRefGoogle Scholar
Bozkaya, Ö. & Yalçm, H. (2005) Diagenesis and very low-grade metamorphism of the Antalya Unit: mineralogical evidence of Triassic rifting, Alanya-Gazipaga, Central Taurus Belt, Turkey. Journal of Asian Earth Sciences, 24 (in press).CrossRefGoogle Scholar
Bozkaya, Ö., Yalçm, H. & Göncüoğlu, M.C. (2002) Mineralogic and organic responses to stratigraphic irregularities: an example from the Lower Paleozoic very low-grade metamorphic units of the Eastern Taurus Autochthon, Turkey. Schweizerische Mineralogische und Petrographische Mitteilungen, 82, 355–373.Google Scholar
Brindley, G.W. (1961) Chlorite minerals. Pp. 242-296 in: The X-ray Identification and Crystal Structures of Clay Minerals (Brown, G., editor). Mineralogical Society, London.Google Scholar
Brindley, G.W. (1980) Quantitative X-ray mineral analysis of clays. Pp. 411—438 in: Crystal Structures of Clay Minerals and their X-ray Identification (Brindley, G.W. & Brown, G., editors). Mineralogical Society, London.CrossRefGoogle Scholar
Brown, G. & Brindley, G.W. (1980) X-ray diffraction procedures for clay mineral identification. Pp. 305—360 in: Crystal Structures of Clay Minerals and their X-ray Identification (Brindley, G.W. & Brown, G., editors). Mineralogical Society, London.Google Scholar
Chagnon, A. & Desjardins, M. (1991) Détermination de la composition de la chlorite par diffraction et microanalyse aux rayons X. The Canadian Mineralogist, 29, 245–254.Google Scholar
Chang, H.K., Mackenzie, F.T. & Schoonmaker, J. (1986) Comparisons between the diagenesis of dioctahedral and trioctahedral smectite, Brazilian offshore basins. Clays and Clay Minerals, 34, 407–423.CrossRefGoogle Scholar
Chatterjee, N.D. (1971) Phase equilibria in the Alpine metamorphie rocks of the environs of the Dora-Maira Massif, Western Italian Alps. Neues Jahrbuch für Mineralogie, Abhandlungen, 114, 181–245.Google Scholar
Craig, J., Fitches, W.R. & Maltman, A.J. (1982) Chloritemica stacks in low-strain rocks from Central Wales. Geological Magazine, 119, 243–256.CrossRefGoogle Scholar
Dimberline, A.J. (1986) Electron microscope and microprobe analysis of chlorite-mica stacks in the Wenlock turbidites, mid Wales, UK. Geological Magazine, 123, 299306.CrossRefGoogle Scholar
Eberl, D.D. & Velde, B. (1989) Beyond the Kiibler index. Clay Minerals, 24, 571–577.CrossRefGoogle Scholar
Frey, M. (1969) A mixed-layer paragonite/phengite of low-grade metamorphie origin. Contributions to Mineralogy and Petrology, 24, 63–65.CrossRefGoogle Scholar
Frey, M. (1970) The step from diagenesis to metamorphism in pelitic rocks during Alpine orogenesis. Sedimentology, 15, 261279.CrossRefGoogle Scholar
Frey, M. (1987) Very low-grade metamorphism of clastic sedimentary rocks. Pp 9—58 in: Low Temperature Metamorphism (Frey, M., editor). Blackie, Glasgow and London.Google Scholar
Frey, M., Saunder, J. & Schwander, H. (1988) The mineralogy and metamorphie geology of low-grade metasediments, Northern Range, Trinidad. Journal of the Geological Society, London, 145, 563–575.CrossRefGoogle Scholar
Gedik, I. (1988) A paleogeographical approach to the Devonian of Turkey. Pp. 691—701 in: Devonian of the World (Millan, N.J., Embry, A.F. & Glass, D.J., editors). Canadian Society of Petroleum Geologists Memoir, 14, Canada.Google Scholar
Göncüoğlu, M.C. & Kozlu, H. (2000) Early Palaeozoic evolution of the NW Gondwanaland: data from southern Turkey and surrounding regions. Gondwana Research, 3, 315–323.CrossRefGoogle Scholar
Göncüoğlu, M.C., Dirik, K. & Kozlu, H. (1997) Pre-Alpine and Alpine Terranes in Turkey: Explanatory notes to the terrane map of Turkey. Annales Geologique Pays Hellenique, 37, 515–536.Google Scholar
Göncüoğlu, M.C., Turhan, N., Şentürk, K, Özcan, A., Uysal, Ş. & Yalimz, M.K. (2000) A geotraverse across northwestern Turkey: tectonic units of the Central Sakarya region and their tectonic evolution. Pp: 139—161 in. Tectonics and Magmatism in Turkey and the Surrounding Area (Bozkurt, E., Winchester, J.A. & Piper, J.D.A., editors). Special Publication 173, Geological Society, London,.Google Scholar
Grathoff, G.H. & Moore, D.M. (1996) Illite polytype quantification using Wildfire© calculated X-ray diffraction patterns. Clays and Clay Minerals, 44, 835–842.CrossRefGoogle Scholar
Guggenheim, S., Bain, D.C., Bergaya, F., Brigatti, M.F., Drits, V.A., Eberl, D.D., Formoso, M.L.L., Galán, E., Merriman, R.J., Peacor, D.R., Stanjek, H. & Watanabe, T. (2002) Report of the AIPEA nomenclature committee for 2001: order, disorder and crystallinity in phyllosilicates and the use of the ‘Crystallinity Index'. Clay Minerals, 37, 389393.CrossRefGoogle Scholar
Guidotti, C.V. & Sassi, F.P. (1986) Classification and correlation of metamorphie faeies series by means of muscovite bo data from low-grade metapelites. Neues Jahrbuch für Mineralogie, Abhandlungen, 153, 363380.Google Scholar
Hesse, R. & Dalton, E. (1991) Diagenetic and low-grade metamorphie terranes of Gaspé Peninsula related to the geological structure of the Taconian and Acadian orogenic belts, Quebec Appalachians. Journal of Metamorphie Geology, 9, 775–790.Google Scholar
Hoffman, J. & Hower, J. (1979) Clay mineral assemblages as low grade metamorphie geothermometers: application to the thrust faulted disturbed belt of Montana, USA. Pp. 55—79 in: Aspects of Diagenesis (Scholle, P.A. & Schluger, P.R., editors). Society of Economic Paleontologists and Mineralogists, Special Publication, 26, New York.Google Scholar
Hunziker, J.C., Frey, M., Clauer, N., Dallmeyer, R.D., Fredrichsen, H., Flehmig, W., Hochstrasser, K., Roggviler, P. & Schwander, H. (1986) The evolution of illite to muscovite: mineralogical and isotopic data from the Glarus Alps, Switzerland. Contributions to Mineralogy and Petrology, 92, 157–180.CrossRefGoogle Scholar
Inoue, A. & Utada, M. (1991) Smectite-to-chlorite transformation in thermally metamorphosed volcanoclastic rocks in the Kamikita area, Northern Honshu, Japan. American Mineralogist, 76, 628–640.Google Scholar
Inoue, A., Utada, M., Nagata, H. & Watanabe, T. (1984) Conversion of triochahedral smectite to interstratified chlorite-smectite in Pliocene acidic pyroclastic sediments of the Ohyu District, Akita Prefecture, Japan. Clay Science, 6, 103–116.Google Scholar
Jiang, W.T. & Peacor, D.R. (1993) Formation and modification of metastable intermediate sodium potassium mica, paragonite, and muscovite in hydrothermally altered metabasites from northern Wales. American Mineralogist, 78, 782–793.Google Scholar
Kisch, H.J. (1991) Development of slaty cleavage and degree of very-low-grade metamorphism: a review. Journal of Metamorphie Geology, 9, 735–750.Google Scholar
Kozur, H. & Göncüoğlu, M.C. (1998) Main features of the pre-Variscan development in Turkey. Ada Universitatis Carolinae-Geologica, 42, 459–464.Google Scholar
Krumm, H. (1984) Anchimetamorphose im Anis und Ladin (Trias) der Nördlichen Kalkalpen zwischen Arlberg und Kaisergebirge-ihre Verbreitung und deren baugeschichtliche Bedeutung. Geologische Rundschau, 73, 223–257.CrossRefGoogle Scholar
Kübler, B. (1968) Evaluation quantitative du métamorphisme par la cristallinité de Pillite. Bulletin-Centre de Recherches Pau-SNPA, 2, 385–397.Google Scholar
Kübler, B. (1984) Les indicateurs des transformations physiques et chimiques dans la diagenèse, température et calorimetrie. Pp. 489—596 in: Thermometrie et Barométrie Géologiques (Lagache, M., editor). Societé française de Minéralogie et de Cristallographie, Paris.Google Scholar
Li, G., Peacor, D.R., Merriman, R.J. & Roberts, B. (1994a) The diagenetic to low-grade metamorphic evolution of matrix white micas in the system muscoviteparagonite in a mudrock from Central Wales, United Kingdom. Clays and Clay Minerals, 42, 369–381.Google Scholar
Li, G., Peacor, D.R., Merriman, R.I, Roberts, B. & Van der Pluijm, B.A. (1994b) TEM and AEM constraints on the origin and significance of chlorite-mica stacks in slates: an example from Central Wales, U.K. Journal of Structural Geology, 16, 11391157.CrossRefGoogle Scholar
Merriman, R.J. (2002) Contrasting clay mineral assemblages in British Lower Paleozoic slate belts: the influence of geotectonic setting. Clay Minerals, 37, 207–219.CrossRefGoogle Scholar
Merriman, R.J. & Frey, M. (1999) Patterns of very lowgrade metamorphism in metapelitic rocks. Pp. 61—107 in: Low Grade Metamorphism (Frey, M. & Robinson, D. editors). Blackwell Sciences Ltd., Oxford, UK.Google Scholar
Merriman, R.J. & Peacor, D.R. (1999) Very low-grade metapelites: mineralogy, microfabrics and measuring reaction progress. Pp. 10—60 in: Low Grade Metamorphism (Frey, M. & Robinson, D., editors). Blackwell Sciences Ltd., Oxford, UK.Google Scholar
Merriman, R.J. & Roberts, B. (1985) A survey of white mica crystallinity and polytypes in pelitic rocks of Snowdonia and Llyn, North Wales. Mineralogical Magazine, 49, 305–319.CrossRefGoogle Scholar
Milodowski, A.E. & Zalasiewicz, J.A. (1991) The origin, sedimentary, diagenetic and metamorphic evolution of chlorite-mica stacks in Llandovery sediments of central Wales, UK. Geological Magazine, 128, 263278.CrossRefGoogle Scholar
Moore, D.M. & Reynolds, R.C. (1997) X-ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press, Oxford, UK, 378 pp.Google Scholar
Mposkoz, E. & Perdikatzis, V. (1981) Die Paragonit-Chloritoid führenden Schiefer des südwestlichen Bereiches des Kerkis auf Samos (Greichenland). Neues Jahrbuch für Mineralogie, Abhandlungen, 142, 292308.Google Scholar
Nieto, F. (1997) Chemical composition of metapelitic chlorite: X-ray diffraction and optical property approach. European Journal of Mineralogy, 9, 829–841.CrossRefGoogle Scholar
Nieto, F., Velilla, N., Peacor, D.R. & Ortega-Huertas, M. (1994) Regional retrograde alteration of sub-greenschist facies chlorite to smectite. Contributions to Mineralogy and Petrology, 115, 243–252.CrossRefGoogle Scholar
Nieto, F., Ortega-Huertas, M., Peacor, D. & Arostegui, J. (1996) Evolution of illite/smectite from Early diagenesis through incipient metamorphism in sediments of the Basque-Cantabrian basin. Clays and Clay Minerals, 44, 304323.CrossRefGoogle Scholar
O'Brien, N.R. & Slatt, R.M. (1990) Argillaceous Rock Atlas. Springer-Verlag, Berlin, 141 pp.CrossRefGoogle Scholar
Özgiil, N. (1976) Some geological aspects of the Taurus orogenic belt (Turkey). Bulletin of the Geological Society of Turkey, 19, 65–78 (in Turkish, English abstract).Google Scholar
Roberts, B., Evans, J.A., Merriman, R.J. & Smith, M. (1989) Discussion on low grade metamorphism of the Welsh Basin Lower Palaeozoic succession: an example of diastathermal metamorphism. Journal of the Geological Society, London, 146, 885890.Google Scholar
Robinson, D. (1987) Transition from diagenesis to metamorphism in extensional and collision settings. Geology, 15, 866–869.2.0.CO;2>CrossRefGoogle Scholar
Robinson, D. & Bevins, R.E. (1989) Diastathermal (extensional) metamorphism at very low grades and possible high grade analogues. Earth and Planetary Science Letters, 92, 81–88.CrossRefGoogle Scholar
Sassi, F.P. & Scolari, A. (1974) The b 0 value of the potassic white micas as a barometric indicator in low-grade metamorphism of pelitic schists. Contributions to Mineralogy and Petrology, 45, 143152.CrossRefGoogle Scholar
Sassi, F.P., Krautner, H.G. & Zirpoli, G. (1976) Recognition of the pressure character in greenschist facies metamorphism. Schweizerische Mineralogische und Petrographische Mitteilungen, 56, 427–434.Google Scholar
Şengör, A.M.C. & Yilmaz, Y. (1981) Tethyan evolution of Turkey: A plate tectonic approach. Tectonophysics, 75, 181–241.CrossRefGoogle Scholar
Środoń, J. (1984) X-ray powder diffraction identification of illitic materials. Clays and Clay Minerals, 32, 337–349.CrossRefGoogle Scholar
Teichmüller, M. (1987) Organic material and very lowgrade metamorphism. Pp. 114—161 in: Low Temperature Metamorphism (Frey, M., editor). Blackie, Glasgow and London.Google Scholar
Warr, L.N. & Greiling, R.O. (1996) Thrust-related very low-grade metamorphism in the marginal part of an orogenic wedge, Scandinavian Caledonides. Tectonics, 15, 1213–1229.CrossRefGoogle Scholar
Warr, L.N. & Rice, A.H.N. (1994) Interlaboratory standardization and calibration of clay mineral crystallinity and crystallite size data. Journal of Metamorphic Geology, 12, 141–152.CrossRefGoogle Scholar
Warr, L.N., Primmer, T.J. & Robinson, D. (1991) Variscan very low-grade metamorphism in southwest England: a diastathermal and thrust-related origin. Journal of Metamorphic Geology, 9, 751–764.CrossRefGoogle Scholar
Xie, X., Byerly, G.R. & Ferrell, R.E. Jr. (1997) lib trioctahedral chlorite from the Barberton greenstone belt: crystal structure and rock composition constraints with implications to geothermometry. Contributions to Mineralogy and Petrology, 126, 275291.CrossRefGoogle Scholar
Yalçm, H., Bozkaya, Ö. & Başibüyük, Z. (1999) Phyllosilicate mineralogy of very low-grade Malatya metamorphites of upper Paleozoic age. Pp. 271—278 in: Proceedings of 52nd Geological Congress of Turkey (Ulusoy, R. & Topal, T., editors). Chamber of Geological Engineers of Turkey, Ankara (in Turkish, English abstract).Google Scholar
Zen, E.A.N. & Albee, A.L. (1964) Coexistent muscovite and paragonite in pelitic schists. American Mineralogist, 49, 904–925.Google Scholar