Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-23T17:30:34.798Z Has data issue: false hasContentIssue false

Evolution with depth from detrital to authigenic smectites in sediments from AND-2A drill core (McMurdo Sound, Antarctica)

Published online by Cambridge University Press:  09 July 2018

F. Iacoviello*
Affiliation:
Dipartimento di Scienze della Terra, Università degli Studi di Siena, Via Laterina 8, 53100 Siena, Italy
G. Giorgetti
Affiliation:
Dipartimento di Scienze della Terra, Università degli Studi di Siena, Via Laterina 8, 53100 Siena, Italy
F. Nieto
Affiliation:
Departamento de Mineralogía y Petrología and I.A.C.T., Universidad de Granada - CSIC, Avenida Fuentenueva s/n, 18002 – Granada, Spain
I. T. Memmi
Affiliation:
Dipartimento di Scienze della Terra, Università degli Studi di Siena, Via Laterina 8, 53100 Siena, Italy

Abstract

We have examined the nature and origin of smectites in glaciomarine sediments of the AND-2A drill core (McMurdo Sound, Antarctica) by means of X-ray diffraction (XRD) analyses on the clay fraction, field emission scanning electron microscopy (FESEM), scanning electron microscopy (SEM) observations and SEM-EDS microanalyses on smectite particles. Relying on the smectite variation throughout the drill core it was possible to split the sequence into three units. Smectites throughout the core are either detrital or authigenic. Detrital smectites are close to montmorillonite-beidellite in composition while newly-formed smectites frequently have higher Fe-Mg contents and intermediate compositions between the saponite and nontronite field, with lower amounts in the montmorillonite-beidellite field. In the upper sedimentary sections (Unit I, and Unit II, 36-440 mbsf, 0.7-16.5 Ma) smectites are interpreted to be predominantly detrital, whereas in the lower portion of the core (Unit III, 440-1123.20 mbsf, 16.5-20.2 Ma) authigenic smectites are the most common feature. The predominance of mica, the abundance of chlorite, and the nature of smectites in the upper units indicate physical weathering under cold and dry climate, and a dominant provenance for the clay minerals from the Transantarctic Mountains. Smectites in the lower unit are considered mostly authigenic and they are most likely to be the result of early diagenetic processes, being formed from the alteration of volcanic material (glass, pyroxenes and feldspars) and/or through precipitation from fluids of a possible hydrothermal origin. Our survey attests to the importance of discriminating between a detrital and authigenic nature of smectites as the occurrence of authigenic clay minerals in ancient sedimentary successions might lead to incorrect palaeoclimatic interpretations, since they can be affected by diagenetic processes, thus obliterating the climatic signal.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abad, I., Jimenez-Millan, J., Molina, J.M., Nieto, F. & Vera, J.A. (2003) Anomalous reverse zoning of saponite and corrensite caused by contact metamorphism and hydrothermal alteration of marly rocks associated with subvolcanic bodies. Clays and Clay Minerals, 51, 543–554.Google Scholar
Acton, G., Crampton, J., Di Vincenzo, G., Fielding, C.G., Florindo, F., Hannah, M.J., Harwood, D.M., Ishman, S.E., Johnson, K., Jovane, L., Levy, R.H., Lum, B., Marcano, M.C., Mukasa, S.B., Ohneiser, C., Olney, M., Riesselman, C., Sagnotti, L., Stefano, C., Strada, E., Taviani, M., Tuzzi, E., Verosub, K.L., Wilson, G.S., Zattin, M. & ANDRILL-SMS Science Team (2008-2009) Preliminary integrated chronostratigraphy of the AND-2A core, ANDRILL Southern McMurdo Sound Project, Antarctica. Terra Antartica, 15, 211–220.Google Scholar
ANDRILL SMS Science Team (2010) An integrated age model for the ANDRILL-2A drill core. In: ANDRILL Southern McMurdo Sound Project Science Integration Workshop - Program and Abstracts (Kontar, K., Harwood, D.M., Florindo, F. & S. Fischbein, S. editors). ANDRILL Contribution # 16, ANDRILL Science Management Office, University of Nebraska, Lincoln, NE, 113 pp.Google Scholar
Bentley, C.R. (1998) Rapid sea-level rise from a West Antarctic ice-sheet collapse: a short-term perspective. Journal of Glaciology. 44, 157–163.Google Scholar
Berner, R.A. (1970) Sedimentary pyrite formation. American Journal of Science, 268, 1–23.CrossRefGoogle Scholar
Berner, R.A. (1980) Early Diagenesis: A Theoretical Approach. Princeton University Press, 256 pp.Google Scholar
Biscaye, P.E. (1965) Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans. Geological Society of America Bulletin, 76, 803–832.Google Scholar
Buatier, M.D., Karpoff, A.M. & Charpentier, D. (2002) Clays and zeolite authigenesis in sediments from the flank of the Juan de Fuca Ridge. Clay Minerals, 37, 143–155.Google Scholar
Chamley, H. (1989) Clay Sedimentology. Springer, 623 pp.CrossRefGoogle Scholar
Cole, T.G. (1985) Composition, oxygen isotope geochemistry and origin of smectite in the metalliferous sediments of the Bauer Deep, southeast Pacific. Geochimica et Cosmochimica Acta, 49, 221–235.Google Scholar
Cole, T.G. & Shaw, H.F. (1983) The nature and origin of authigenic smectites in some recent marine sediments. Clay Minerals, 18, 239–252.Google Scholar
Cook, Y.A. & Craw, D. (2002) Neoproterozoic structural slices in the Ross Orogen, Skelton Glacier area, South Victoria Land, Antarctica. New Zealand Journal of Geology and Geophysics, 45, 133–143.Google Scholar
Cuadros, J., Dekov, V.M., Arroyo, X. & Nieto, F. (2011) Smectite formation in submarine hydrothermal sediments: samples from the HMS Challenger Expedition (1872-1876). Clays and Clay Minerals, 59, 147–164.CrossRefGoogle Scholar
Decarreau, A. & Bonnin, D. (1986) Synthesis and crystallogenesis at low temperature of Fe(III)- smectites by evolution of coprecipitated gels: experiments in partially reducing conditions. Clay Minerals, 21, 861–877.CrossRefGoogle Scholar
de la Fuente, S., Cuadros, J., Fiore, S. & Linares, J. (2000) Electron microscopy study of the volcanic tuff alteration to illite-smectite under hydrothermal conditions. Clays and Clay Minerals, 48, 339–350.Google Scholar
Del Carlo, P., Panter, K.S., Bassett, K., Bracciali, L., Di Vincenzo, G., & Rocchi, S. (2009) The upper lithostratigraphic unit of ANDRILL AND-2A core (Southern McMurdo Sound, Antarctica): local volcanic sources, paleoenvironmental implications and subsidence in the western Victoria Land Basin. Global and Planetary Change, 69, 142–161.CrossRefGoogle Scholar
Denton, G.H. & Hughes, T.J. (2000) Reconstruction of the Ross Ice drainage system, Antarctica, at the Last Glacial Maximum. Geografiska Annaler, Series A, 82, 143–166.Google Scholar
Diekmann, B., Petschick, R., Gingele, F.X., Fütterer, D.K., Abelmann, A., Brathauer, U., Gersonde, R. & Mackensen, A., (1996) Clay mineral fluctuations in Late Quaternary sediments of the southeastern South Atlantic: implications for past changes of deep water advection. Pp. 621–644 in: The South Atlantic: Present and Past Circulation (Wefer, G., Berger, W.H., Siedler, G. & Webb, D.J., editors). Springer, Berlin.Google Scholar
Di Vincenzo, G., Bracciali, L., Del Carlo, P., Panter, K. & Rocchi, S. (2010) 40Ar-39Ar dating of volcanogenic products from the AND-2A core (ANDRILL Southern McMurdo Sound Project, Antarctica): correlations with the Erebus Volcanic Province and implications for the age model of the core. Bulletin of Volcanology, 72, 487–505.Google Scholar
Do Campo, M., del Papa, C., Nieto, F., Hongn, F. & Petrinovic, I. (2010) Integrated analysis for constraining palaeoclimatic and volcanic influences on clay-mineral assemblages in orogenic basins (Palaeogene Andean foreland, Northwestern Argentina). Sedimentary Geology, 228, 98–112.Google Scholar
Drief, A., Nieto, F. & Sánchez-Navas, A. (2001) Experimental clay-mineral formation from a subvolcanic rock by interaction with 1 M NaOH solution at room temperature. Clays and Clay Minerals, 49, 92–106.Google Scholar
Ehrmann, W. (1998) Implications of Late Eocene to Early Miocene clay mineral assemblages in McMurdo Sound (Ross Sea, Antarctica) on paleoclimate and ice dynamics. Paleogeography, Paleoclimatology, Paleoecology, 139, 213–231.Google Scholar
Ehrmann, W. (2000) Smectite content and crystallinity in sediments from CRP-2/2A, Victoria Land Basin, Antarctica. Terra Antartica, 7, 575–580.Google Scholar
Ehrmann, W. (2001) Variations in smectite content and crystallinity in sediments from CRP-3, Victoria Land Basin, Antarctica. Terra Antartica, 8, 533–542.Google Scholar
Ehrmann, W.U & Mackensen, A. (1992) Sedimentological evidence for the formation of an East Antarctic ice sheet in Eocene/Oligocene time. Palaeogeography, Palaeoclimatology, Palaeoecology, 93, 85–112.Google Scholar
Ehrmann, W., Melles, M., Kuhn, G. & Grobe, H. (1992) Significance of clay mineral assemblages in the Antarctic Ocean. Marine Geology, 107, 249–273.Google Scholar
Ehrmann, W., Bloemendal, J., Hambrey, M.J., McKelvey, B. & Whitehead, J. (2003) Variations in the composition of the clay fraction of the Cenozoic Pagodroma Group: implications for determining provenance. Sedimentary Geology, 161, 131–152.Google Scholar
Ehrmann, W., Setti, M. & Marinoni, L. (2005) Clay minerals in Cenozoic sediments off Cape Roberts (McMurdo Sound, Antarctica) reveal palaeoclimatic history. Palaeogeography, Palaeoclimatology, Palaeoecology, 229, 187–211.Google Scholar
Fesharaki, O., García Romero, E., Cuevas-González, N. & López-Martinéz, N. (2007) Clay mineral genesis and chemical evolution in the Miocene sediments of Somosaguas, Madrid Basin, Spain. Clay Minerals, 42, 173–187.Google Scholar
Fielding, C.R., Atkins, C.B., Basset, K.N., Browne, G.H., Dunbar, G.B., Field, B.D., Frank, T.D., Krissek, L.A., Panter, K.S., Passchier, S., Pekar, S.F., Sandroni, S., Talarico, F. & ANDRILL-SMS Science Team (2008-2009) Sedimentology and stratigraphy of the AND- 2A core, ANDRILL Southern McMurdo Sound Project, Antarctica. Terra Antartica, 15, 77–112.Google Scholar
Fielding, C.R., Browne, G.H., Field, B., Florindo, F., Harwood, D.M., Krissek, L.A., Levy, R.H., Panter, K.S., Passchier, S. & Pekar, S.F (2011) Sequence stratigraphy of the ANDRILL AND-2A drillcore, Antarctica: a long-term, ice-proximal record of Early to Mid-Miocene climate, sea-level and glacial dynamism. Palaeogeography, Palaeoclimatology, Palaeoecology 305, 337–351.Google Scholar
Fitzgerald, P. (2002) Tectonics and landscape evolution of the Antarctic plate since the breakup of Gondwana, with an emphasis on the West Antarctic Rift System and the Transantarctic Mountains. Pp. 453–469 in: Antarctica at the close of a millennium: Royal Society of New Zealand Bulletin, 35 (Gamble, J.A., Skinner, D.N.B. & S., Henry, editors).Google Scholar
Franke, D. & Ehrmann, W. (2010) Neogene clay mineral assemblages in the AND-2A drill core (McMurdo Sound, Antarctica) and their implications for environmental change. Paleogeography, Paleoclimatology, Paleoecology, 286, 55–65.Google Scholar
Gifkins, C., Hermann, W. & Large, R. (2005) Altered Volcanic Rocks: A Guide to Description and Interpretation. Centre for Ore Deposit Research (CODES), University of Tasmania, Australia, 275 pp.Google Scholar
Giorgetti, G., Aghib, F.S., Livi, K.J.T., Gaillot, A.C. & Wilson, T.J. (2007) Newly formed phyllosilicates in rock matrices and fractures from CRP-3 core (Antarctica): an electron microscopy study. Clay Minerals, 42, 21–43.Google Scholar
Giorgetti, G., Talarico, F., Sandroni, S. & Zeoli, A. (2009) Provenance of Pleistocene sediments in the ANDRILL AND-1B drill core: clay and heavy mineral data. Global and Planetary Change, 69, 94–102.Google Scholar
Harwood, D.M., Florindo, F., Talarico, F.M., Levy, R.H., Kuhn, G., Naish, T., Niessen, F., Powell, R., Pyne, A. & Wilson, G. (2009) Antarctic drilling recovers stratigraphic records from the continental margin. Eos, 90, 90–91.Google Scholar
Hein, J.R. & Scholl, D.W. (1978) Diagenesis and distribution of late Cenozoic volcanic sediment in the southern Bering Sea. Bulletin of Geological Society of America, 89, 197–210.Google Scholar
Hillier, S. (1995) Erosion, sedimentation and sedimentary origin of clays. Pp. 162–219 in: Origin and mineralogy of clays (Velde, B., editor). Springer, Berlin.Google Scholar
Huertas, F.J., Cuadros, J., Huertas, F. & Linares, J. (2000) Experimental study of the hydrothermal formation of smectite in the beidellite-saponite series. American Journal of Science, 300, 504–527.Google Scholar
Jimenez-Millan, J., Abad, I., & Nieto, F. (2008) Contrasting Alteration Processes in Hydrothermally Altered Dolerites from the Betic Cordillera, Spain. Clay Minerals, 43, 267–280.Google Scholar
Kastner, M. (1981) Authigenic silicates in deep-sea sediments: formation and diagenesis. Pp. 915–980 in: The Sea, 7 (Emiliani, C., editor). Wiley, New York.Google Scholar
Kretz, R. (1983) Symbols for rock-forming minerals. American Mineralogist, 68, 277–279.Google Scholar
Kurnusov, V.B., Kholodokevich, V., Kokorina, L.P., Kotov, N.V. & Chudaev, O.V. (1982) The origin of clay minerals in the oceanic crust revealed by natural and experimental data. Proceedings of the International Clay Conference, Bologna and Pavia, 547–556.Google Scholar
Kyle, P.R. (1990) McMurdo Volcanic Group, western Ross Embayment. Introduction. Pp. 19–25 in: Volcanoes of the Antarctic plate and Southern Oceans: AGU Antarctic Research Series, 48, (Le Masurier, W.E. & Thomson, J.W., editors).CrossRefGoogle Scholar
Lovley, D.R. (1991) Dissimilatory Fe(III) and Mn(IV) reduction. Microbiological Reviews, 55, 259–287.Google Scholar
Manuella, F.C., Carbone, S. & Barreca, G. (2012) Origin of saponite-rich clays in a fossil serpentinite-hosted hydrothermal system in the crustal basement of the Hyblean Plateau (Sicily, Italy). Clays and Clay Minerals, 60, 18–31.Google Scholar
Marsaglia, K.M. & Tazaki, K. (1992) Diagenetic trends in Leg 126 sandstones. Proceedings of the Ocean Drilling Program, Scientific Results, 126, 125–138.Google Scholar
Moorby, S.A. & Cronan, D.S. (1983) The geochemistry of hydrothermal and pelagic sediments from the Galapagos hydrothermal mounds field. DSDP Leg 70. Mineralogical Magazine, 47, 291–300.Google Scholar
Nyland, R, Panter, K., Del Carlo, P., Di Vincenzo, G., Rocchi, S., Tiepolo, M. & Field, B. (2011) Evidence for early-phase explosive basaltic volcanism at Mt. Morning from glass-rich sediments in the ANDRILL AND-2A core and possible response to glacial cyclicity. Abstract. 11th International Symposium on Antarctic Earth Sciences, 10-15 July 2011, Edinburgh, Scotland.Google Scholar
Panter, K.S., Talarico, F., Bassett, K., Del Carlo, P., Field, B., Frank, T., Hoffman, S., Kuhn, G., Reichelt, L., Sandroni, S., Taviani, M., Bracciali, L., Cornamusini, G., von Eynatten, H., Rocchi, S. & the ANDRILLSMS Science Team (2008-2009) Petrologic and Geochemical Composition of the AND-2A Core, ANDRILL Southern McMurdo Sound Project, Antarctica. Terra Antartica, 15, 147–192.Google Scholar
Passchier, S., Browne, G., Field, B., Fielding, C.R., Krissek, L.A., Panter, K., Pekar, S.F. & ANDRILLSMS Science Team (2011) Early and Middle Miocene Antarctic glacial history from the sedimentary facies distribution in the AND-2A drill hole, Ross Sea, Antarctica. Geological Society of America Bulletin, 123, 2352–2365.CrossRefGoogle Scholar
Petschick, R., Kuhn, G. & Gingele, F. (1996) Clay mineral distribution in surface sediments of the South Atlantic: sources, transport, and relation to oceanography. Marine Geology, 130, 203–229.CrossRefGoogle Scholar
Setti, M., Marinoni, L., Lòpez-Galindo, A. & Ben Aboud, A. (1997) XRD, SEM and TEM investigations of smectite of the core CIROS-1 (Ross Sea, Antarctica). Terra Antartica, 4, 119–125.Google Scholar
Setti, M. Marinoni, L., Lòpez-Galindo, A. & Ben Aboud, A. (1998) TEM observations and Rare Earth element analysis on the clay minerals of the CRP-1 Core (Ross-Sea, Antarctica). Terra Antartica, 5, 621–626.Google Scholar
Setti, M., Marinoni, L., Lòpez-Galindo, A., & Delgado-Huertas, A. (2000) Compositional and morphological features of the smectite of the sediments of the CRP- 2A Core, Victoria Land Basin, Antarctica. Terra Antartica, 7, 581–587.Google Scholar
Setti, M., Marinoni, L. & Lòpez-Galindo, A. (2001) Crystal-chemistry of smectite in sediments of CRP 3 Drillcore (Victoria Land Basin, Antarctica): Preliminary results. Terra Antartica, 8, 543–550.Google Scholar
Setti, M., Marinoni, L. & Lòpez-Galindo, A. (2004) Mineralogical and geochemical characteristics (major, minor, trace elements and REE) of detrital and authigenic clay minerals in a Cenozoic sequence from Ross Sea, Antarctica. Clay Minerals, 39, 405–421.Google Scholar
Singer, A. (1984) The paleoclimatic interpretation of clay minerals in sediments: a review. Earth-Science Reviews, 21, 251–293.Google Scholar
Vitali, F., Blanc, G., Larqué, P., Duplay, J. & Morvan, G. (1999) Thermal diagenesis of clay minerals within volcanogenic material from the Tonga convergent margin. Marine Geology, 157, 105–125.Google Scholar
Weaver, C.E. (1989) Clays, Muds and Shales, Developments in Sedimentology, 44. Elsevier, 819 pp.Google Scholar
Wise, S.W., Smellie, J., Aghib, F.S., Jarrad, R. & Krissek, L. (2001) Authigenic smectite clay coats in CRP-3 Drillcore, Victoria Land Basin, Antarctica, as possible indicators of fluid flow: a progress report. Terra Antartica, 8, 281–298.Google Scholar
Wonik, T., Grelle, T., Handwerger, D., Jarrard, R.D., McKee, A., Patterson, T., Paulsen, T., Pierdominici, S., Schmitt, D.R., Schröder, H., Speece, M., Wilson, T. & the ANDRILL-SMS Science Team (2008-2009) Downhole Measurements in the AND-2A Core, ANDRILL Southern McMurdo Sound Project, Antarctica. Terra Antartica, 15, 57–68.Google Scholar