Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-07-07T02:29:12.501Z Has data issue: false hasContentIssue false

Geological factors controlling clay mineral patterns across the Cretaceous-Tertiary boundary in Mediterranean and Atlantic sections

Published online by Cambridge University Press:  09 July 2018

M. Ortega
Affiliation:
Dpto. Mineralogía y Petrología. Fae. Ciencias. Univ. Granada. Avda. Fuentenueva, s/n. 18002 Granada
I. Palomo
Affiliation:
Dpto. Mineralogía y Petrología. Fae. Ciencias. Univ. Granada. Avda. Fuentenueva, s/n. 18002 Granada
F. Martinez
Affiliation:
Instituto Andaluz de Ciencias de la Tierra. Fac. Ciencias. Univ. Granada. Avda. Fuentenueva, s/n. 18002 Granada
I. Gonzalez
Affiliation:
Dpto. Cristalografía y Mineralogía. Fac. Químiea. Prof: García González, s/n. 41071 Sevilla, Spain

Abstract

The clay mineral associations in the Cretaceous-Tertiary Boundary (KTB) and in the Danian and Maastrichtian levels of sections from the Mediterranean and the Atlantic Domains have been studied. The Mediterranean sections have a single mineral association consisting of smectiteiltite and kaolinite, whereas the Atlantic sections have several associations: illite-chlorite, illite-R1 I-S-kaolinite and illite-R 1 I-S-chlorite. Data are presented relating to the influence of K-feldspars and Fe oxide sphemles on the clay mineral associations. Study of rare-earth elements shows that regional geological factors affect the clay mineralogy of the KTB, examples showing significant anthigenesis in the Mediterranean sections, and important detrital supply in all the Atlantic sections. We propose that the KTB studied in these marine sections is equivalent to the uppermost layer of the two-layered clay unit originating in a cloud of a vapourized bolide. Regional tectonic conditions have been responsible for differences in clay sedimentation in these geological domains and among the stratigraphic sections of the Atlantic Domain.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amorosi, A. (1995) Glaucony and sequence stratigraphy: a conceptual framework of distribution in siliciclastic sequences. J. Sed. Res. 65, 419425.Google Scholar
Anders, E. & Ebihara, H. (1982) Solar-system abundances of the elements. Geoehim. Cosmochim. Aeta, 46, 23622380.Google Scholar
Aróstegui, J., Zuluaga, M.C., Velasco, F., Ortega Huertas, M. & Nieto, F. (1991) Diagenesis of the Central Basque-Cantabrian basin (Iberian Peninsula) based on illite-smectite distribution. Clay Miner. 26, 535548.Google Scholar
Azcma, J., Foucault, A., Fourcade, E., Garcia Hernández, M., González Donoso, J.M., Linares, A., Linares, D., López Garrido, A.C., Rivas, P. & Vera, J.A. (1979) Las microfacies del Jurásico y Cretácico de las Cordilleras Béticas. Serv. Pub. Univ. Granada.Google Scholar
Bohor, B.F., Foord, E.E., Modreski, P.J. & Triplehorn, D.M. (1984) Mineralogic evidence for an impact event at the Cretaceous-Tertiary boundary. Science, 224, 867869.CrossRefGoogle ScholarPubMed
Bohor, B.F., Triplehom, D.M., Nichols, D.J. & Millard, H.T. Jr. (1987) Dinosaurs, spherules, and the 'magic' layer: A new K-T boundary clay site in Wyoming. Geology, 15, 896899.Google Scholar
Brigatti, M.F. (1983) Relationship between composition and structures in Fe-rich smectites. Clay Miner. 18, 177186.CrossRefGoogle Scholar
Burollet, P.F. (1966) Contribution à l'étude stratigraphique de la Tunisie centrale. Ann. Mines et Geol. Tunisia 18, 1352.Google Scholar
Caillère, S., Hénin, S. & Rautureau, M. (1982) Minéralogie des Argiles. 2. Classlification et Nomenclature, pp. 189. Masson et Cie., Paris.Google Scholar
Chamley, H. (1989) Clay Sedimentology, pp. 521-524. Springer-Verlag, Berlin.CrossRefGoogle Scholar
Chamley, H., Coulon, H., Debrabant, P. & Holtzapffel, T. (1985) Cretaceous interactions between volcanism and sedimentation in the east Mariana Basin, from mineralogical, micromorphological, and geochemical investigations (Site 585, Deep Sea Drilling Project). Init. Rep. DSDP 89, 414429.Google Scholar
Condie, K.C. (1991) Another look at rare-earth elements in shales. Geochim. Cosmochim. Acta, 55, 25272531.Google Scholar
Courtillot, V.E. & Cisowski, S. (1987) The Cretaceous-Tertiary boundary events: external or internal causes. Lunar Planet. Sci. 18, 103104.Google Scholar
Cullers, R.L., Basu, A. & Stuttner, L.J. (1988) Geochemical signature of provenance in sand-size material in soils and stream sediments near the Tobacco Root Batholith, Montana, USA. Chem. Geol. 70, 335348.Google Scholar
Delacotte, O. (1982) Etude magnétostratigraphique et géochimique de la limite Crétacé-Tertiaire de la coupe de Bidart (Pyrenndes Atlantiques). PhD thesis, Univ. Pierre et Marie Curie, Paris, France.Google Scholar
Duplay, J. (1982) Populations de monoparticules d'argiles. PhD thesis, Univ. Poitiers, France.Google Scholar
Elderfield, H. & Greaves, M.J. (1982) The rare-earth elements in seawater. Nature, 296, 214219.Google Scholar
Fastovsky, D.E., McSweeney, K. & Darrell, N.L. (1989) Pedogenic development at the Cretaceous-Tertiary boundary, Garfield Country, Montana. J. Sed. Pet. 59, 758767.Google Scholar
Foster, M. (1960) Interpretation of the composition of trioctahedral micas. U. S. Geol. Survey Pap. 354 B, 11-43.Google Scholar
Goldsmith, J.R. & Laves, F. (1954) The microclinesanidine stability relations. Geochim. Cosmochim. Acta, 5, 119.CrossRefGoogle Scholar
Grauby, O., Petit, S., Decarreau, A. & Baronnet, A. (1993) The beidellite-saponite series: an experimental approach. Eur. J. Mineral. 5, 623–635.Google Scholar
Güven, N. (1988) Smectites. Pp. 497-559 in: Reviews in Mineralogy 19 (Bailey, S.W., editor). Mineralogical Society of America, Washington.Google Scholar
Hallam, A. (1987) End-Cretaceous mass extinction event: argument for terrestrial causation. Science, 238, 12371242.Google Scholar
Haskin, L.A., Haskin, M.A., Frey, F.A. & Wildeman, T.R. (1968) Relative and absolute terrestrial abundances of the rare earths. Pp. 889-912 in. Origin and Distribution of the Elements (L.H. Ahrens, editor). Pergamon Press, Oxford.Google Scholar
Holtzapffel, T. & Chamley, H. (1986) Les smectites latt6es du domaine Atlantique depuis le Jurassique sup6rieur: gisement et signification. Clay Miner. 21, 133148.Google Scholar
Jéhanno, C., Boclet, D., Bonté P., Devineau, J. & Rocchia, R. (1987) L'iridium dans les minéraux à la limite Crétacé-Tertiaire de plusieurs sites européens et africains. Mém. Soc. Géol. Fr. 150, 8194.Google Scholar
Johnsson, M.J. & Reynolds, R. (1986) Clay mineralogy of shale limestone rhythmites in the scaglia rossa (Turonian-Eocene), Italian Apennines. J. Sed. Pet. 56, 501509.Google Scholar
Kasmer, M., Asaro, F., Michel, H.V., Alvarez, W. & Alvarez, L.W. (1984) The precursor of the Cretaceous-Tertiary boundary clays at Stevns Klint and DSDP Hole 465A. Science, 226, 137-143.Google Scholar
Keller, G. (1988) Biotic turnover in benthic foraminifera across the Cretaceous-Tertiary boundary at E1 Kef, Tunisia. Paleogeogr. Paleoclimat. Paleoeco!. 66, 153171.Google Scholar
Klaver, G.T., Kempen, T.M.G., Bianchi, F.R. & Gaast, S. (1986) Green spherules as indicator of the Cretaceous-Tertiary boundary in Deep Sea Drilling Project Hole 603B. lnit. Rep. DSDP 93, 10391055.Google Scholar
Lindinger, M. (1988) The Cretaceous∼Tertiary boundaries oj’ El Kef and Caravaca. Sedimentological, geochemical and clay mineralogical aspects. PhD thesis, Univ. Ztirich, Switzerland.Google Scholar
López Aguayo, F., Sebastián Pardo E, Huertas, F. & Linares, J. (1985) Mineralogy and genesis of the ‘Fardes Formation’ bentonites, Middle Subbetic, Granada Province, Spain. Miner. Petrogr. Acta, 29-A, 303-311.Google Scholar
López Galindo, A. (1986) Mineralogía de series cretácicas de la Zona Subbética. Algunas consideraciones paleogeográficas derivadas de la composición química de las esmectitas. Est. Geol. 42, 231238.Google Scholar
López Galindo, A. (1987) Paligorskita en materiales cretácicos en la Zona Subbica. Origen. Bol. S.E.M. 10-2, 131139.Google Scholar
Luterbacher, H.P. & Premoli Silva I. (1964) Stratigrafia del limite Cretaceo-Terciario nell'Apennino Centrale. Riv. It. Paleonto. Strat. 70, 67128.Google Scholar
MacLeod, N. & Keller, G. (1991) Hiatus distributions and mass extinctions at the Cretaceous-Tertiary boundary. Geology, 19, 497501.Google Scholar
Martínez Ruíz, F. (1994) Geoquímica y mineralogía del trhnsito Cretácico-Terciario en las Cordilleras Béticas y en la Cuenea Vasco-Cantábrica. PhD thesis, Univ. Granada, Spain.Google Scholar
Martínez Ruíz, F., Ortega Huertas, M., Palomo, I. & Barbieri, M. (1992) The geochemistry and mineralogy of the Cretaceous-Tertiary boundary at Agost (southeast Spain). Chem. Geol. 95, 265281.Google Scholar
Martínez Ruíz, F., Ortega Huertas M, Palomo, I. & Acquafredda, P. (1997) Quench textures in altered spherules from the Cretaceous-Tertiary boundary layer at Agost and Caravaca, SE Spain. Sed. Geol. 113, 137147.Google Scholar
Mathey, B., (1988) PaleogeographicaL evolution of the Basco-Cantabrian domain during the Upper Cretaceous. Rev. Soc. Esp. Paleontol. No. Extraord. 142-147.Google Scholar
McLennan, S.M. (1989) Rare-earth elements in sedimentary rocks: influence of provenance and sedimentary processes. Pp. 169-200 in: Geochemistry and Mineralogy of Rare-earth Elements” (Lipin, B.R. & McKay, G.A., editors). Reviews” in Mineralogy, 21. Mineralogical Society of America, Washington, DC.Google Scholar
Miller, K.G., Fairbanks, R.G. & Mountain, G.S. (1987) Tertiary oxygen isotope synthesis, sea level history, and continental margin erosion. Paleoceanography, 2, 1-9.Google Scholar
Montanari, A. (1991) Authigenesis of impact spheroids in the K/T boundary clay from Italy: new constraints for high-resolution stratigraphy of terminal Cretaceous events. J. Sed. Pet. 671, 315339.Google Scholar
Montanari, A., Chan, L.S. & Alvarez, W. (1989) Synsedimentary tectonics in the Late Cretaceous- Tertiary pelagic basin of the Northern Apennines. SEPM Spec. PubL 44, 380399.Google Scholar
Münch, P., Duplay, J. & Cochemé, J.J. (1996) Alteration of silicic vitric tufts interbedded in volcaniclastic deposits of the southern basin and Range province, Mexico: evidences for hydrothermal reactions. Clays Clay Miner. 44, 4967.CrossRefGoogle Scholar
Murray, R.W., Ten Brink, M.R.B., Jones, D.L., Gerlach, D.C. & Russ, G.G. (1990) Rare-earth elements as indicators of different marine depositional environments in chert and shale. Geology, 18, 268271.2.3.CO;2>CrossRefGoogle Scholar
Nieto, F., Ortega Huertas, M., Peacor, D.R. & Aróstegui, J. (1996) Evolution of illite-smectite from early diagenesis through incipient metamorphism in sediments of the Basque-Cantabrian basin. Clays Clay Miner. 44, 304323.CrossRefGoogle Scholar
Ortega Huertas, M., Martínez Ruíz, F., Acquafredda, P. & Palomo, I. (t992) Microanalytical data on K/T boundary potassium feldspar spherules. Electron Microscopy, 2, 579580.Google Scholar
Ortega Huertas, M., Martínez, Ruíz|F., Acquafredda, P. & Palomo 1. (1994) Platinum-Group Elements in the cores of potassium feldspar spherules from the Cretaceous-Tertiary boundary at Caravaca (Spain). Est. Geol. 50, 37.Google Scholar
Ortega Huertas, M., Martínez, Ruíz|F., Palomo, I. & Chamley, H. (1995) Comparative mineralogical and geochemical clay sedimentation in the Betic Cordilleras and Basque-Cantabrian Basin areas at the Cretaceous-Tertiary boundary. Sed. Geol. 94, 209227.Google Scholar
Paquet, H. (1970) Evolution géochimique des minéraux argileux dans les altérations et ies sols des climats méditerranéens et tropicaux á saisons contrastées. Mém. Serv. Carte Géol. Alsace Lorraine, 30, 312.Google Scholar
Piper, D.Z. (1974) Rare-earth elements in the sedimentary cycle: a summary. Chem. Geol. 14, 285–304.Google Scholar
Pollastro, R.M. & Bohor, B.F. (1993) Origin and claymineral genesis of the Cretaceous-Tertiary boundary unit, Western Interior of North America. Clays Clay Miner. 41, 725.Google Scholar
Pollastro, R.M. & Pillmore, C.L. (1987) Mineralogy and petrotogy of the Cretaceous-Tertiary boundary clay bed and adjacent clay-rich rocks. Raton basin. New Mexico and Colorado. J. Sed. Pet. 57, 456466.Google Scholar
Ramirez del Pozo, J. (1973) Sintesis geotógica de la Provincia de Alava. Obra Cultural CAMCV, Vitoria. 53-57.Google Scholar
Rampino, M.R. & Reynolds, R.C. (1983) Clay mineralogy of the Cretaceous-Tertiary boundary clay. Science, 219, 495498.Google Scholar
Rat, P. (1988) The Basque-Cantabrian basin between the Iberian and European plates: some facts but still many problems. Rev. Soc. Geol. Espaha, 1, 327348.Google Scholar
Reynolds, R.C. (1980) Interstratified clay minerals. Pp. 249–303 in. Crystal Structures of Clay Minerals and their X-ray ldent([ication (G.W. Brindley & G. Brown, editors). Mineralogical Society, London.Google Scholar
Reynolds, R.C. & Hower, J. (1970) The nature of interlayering in mixed-layer illite–montmorillonite. Clays Clay Miner. 18, 2536.Google Scholar
Robert, C. & Chamley, H. (1990) Paleoenvironmental significance of clay mineral associations at the Cretaceous-Tertiary passage. Palaeogeogr., Palaeoclimatol., Palaeoecol. 79, 205219.Google Scholar
Schultz, L.G. (1969) Lithium and potassium absorption, dehydroxylafion temperature and structural water content of aluminous smectites. Clays Clay Miner. 19, 137150.CrossRefGoogle Scholar
Sebastián Pardo, E., López Aguayo, F., Huertas, F. & Linares, J. (1984) Las bentonitas sedimentarias de la Formacidn Fardes, Granada, España. Clay Miner. 19, 645652.Google Scholar
Shau, Y.H., Feather, M.E., Essene, E.J. & Peacor, D.R. (1991) Genesis and solvus relations of submicroscopically intergrown paragonite and phengite in a blueschist from northern California. Contrib. Mineral Petrol. 106, 367378.CrossRefGoogle Scholar
Smit, J. & Klaver, G. (1981) Sanidine spherules at the Cretaceous-Tertiary boundary indicate a large impact event. Nature, 292, 4749.Google Scholar
Smit, J. & Ten Kate, W.G.H.Z. (1982) Trace elements patterns at the Cretaceous-Tertiary boundary. Consequences of large impact. Cret. Res. 3, 307332.CrossRefGoogle Scholar
Smit, J., Alvarez, W., Montanari, A., Swinbume, M., Van Kempen, T.M., Klaver, G. & Lustenhouwer, W.J. (1992) ‘Tecktites’ and microtecktites at the Cretaceous-Tertiary boundary: two strewn fields, one crater. Proc. Lunar Planet. Sci. 22, 87100.Google Scholar
Thiry, M. & Jacquin, T. (1992) Clay mineral distribution related to rift activity, sea-level changes and paleoceanography in the Cretaceous of the Atlantic ocean. Clay Miner. 28, 6184.Google Scholar
Vannucci, S., Pancani, M.G., Vaselli, O. & Caradosi, N. (1990) Mineralogical and geochemical features of the Cretaceous-Tertiary boundary in the Barranco del Gredero section (Caravaca, SE Spain). Chem. Erde, 50, 189202.Google Scholar
Velde, B. (1985) Clay Minerals. A Physico-Chemical Explanation of their Occurrence, Developments in Sedimentology, 40. Elsevier, Amsterdam.Google Scholar
Weaver, C.E. & Pollard, L.D. (1975) The Chemistry of Clay Minerals. Developments in Sedimentology, 15. Elsevier, Amsterdam.Google Scholar
Wezel, F.C., Vannucci, S. & Vannucci, R. (1981) D6couverte de divers niveaux riches en iridium darts la ‘scaglia rossa’ et la ‘scaglia bIanca’ de l'Appenin d'Ombrie-Marche (Italic). C R. Acad. Sci. Paris, 293, 837844.Google Scholar