Hostname: page-component-77c89778f8-cnmwb Total loading time: 0 Render date: 2024-07-17T09:21:30.809Z Has data issue: false hasContentIssue false

Geometry optimization of an electrochemical reactor for bleaching kaolin

Published online by Cambridge University Press:  17 January 2023

José Angel Cobos-Murcia*
Affiliation:
Universidad Autónoma del Estado de Hidalgo, Área Académica de Ciencias de la Tierra y Materiales, Carr. Pachuca-Tulancingo km 4.5 s/n, Mineral de la Reforma, Hidalgo, Mexico
Eduardo Hernández-Aguilar
Affiliation:
Universidad Veracruzana, Facultad de Ciencias Químicas, Ote. 6 1009, Col. Rafael Alvarado, Orizaba, Veracruz, CP 94340, Mexico
Ariadna Trujillo-Estrada
Affiliation:
Universidad Autónoma del Estado de Hidalgo, Área Académica de Ciencias de la Tierra y Materiales, Carr. Pachuca-Tulancingo km 4.5 s/n, Mineral de la Reforma, Hidalgo, Mexico Consejo Nacional de Ciencia y Tecnología, Departamento de Cátedras, Av. Insurgentes Sur 1582, Col. Crédito Constructor, Deleg. Benito Juárez, México DF, CP 03940, Mexico
Grisell Gallegos-Ortega
Affiliation:
Universidad Autónoma del Estado de Hidalgo, Área Académica de Ciencias de la Tierra y Materiales, Carr. Pachuca-Tulancingo km 4.5 s/n, Mineral de la Reforma, Hidalgo, Mexico
Victor Esteban Reyes-Cruz
Affiliation:
Universidad Autónoma del Estado de Hidalgo, Área Académica de Ciencias de la Tierra y Materiales, Carr. Pachuca-Tulancingo km 4.5 s/n, Mineral de la Reforma, Hidalgo, Mexico

Abstract

High-whiteness kaolinite mining reserves are scarce. In some locations, it is necessary to remove material to access them (adding to the cost). Therefore, processes have been developed to eliminate contaminants, such as iron, and provide alternatives to the used contaminated materials that, after being treated, meet quality criteria. In our previous research, we developed an electrochemical process for kaolin whitening at the laboratory level and bench scale, demonstrating the reaction mechanisms that occur during the removal of iron from kaolin. However, the geometry used at the laboratory level does not present the most suitable position for the electrodes. Therefore, in the present study, we focused on the geometry and the function of the electrodes. This is necessary during the escalation process to reach the pilot-scale level. The study was carried out using computer-aided engineering in the COMSOL Multiphysics computer program and by analysing the distribution of the electric potential and the electric current of the geometries considered while performing the scaling. The results indicated that the change in the anode position from perpendicular to parallel to the discs improved the distribution of electric current density on the cathode surface and so increased the elimination of iron through electrochemical deposition. Similarly, to reduce the amount of material used in the construction of the reactor, the anode-size effect was analysed, revealing that relatively small anodes improved the distribution of electric current density over the entire surface of the electrode and not only at the edges.

Type
Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of The Mineralogical Society of Great Britain and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Chun Hui Zhou

References

Berube, J.R.R., Babiec, S., Phillip-Jameson, J., Negele, A.R. & Willis, M.J. (1990) Calcined kaolin clay filler pigment enhances opacity and printing properties of newsprint and mechanical papers. US Patent No. US5011534A, 1990-02-14. Retrieved from https://patents.google.com/patent/US5011534A (accessed 1 March 2022).Google Scholar
Bisang, J.M. & Kreysa, G. (1988) Study the effect of electrode resistance on current density distribution in cylindrical electrochemical reactors. Journal of Applied Electrochemistry, 18, 422430.CrossRefGoogle Scholar
Bloodworth, A.J., Highley, D.E. & Mitchell, C.J. (1993) Industrial Minerals Laboratory Manual KAOLIN. British Geological Survey, Nottingham, UK, 80 pp.Google Scholar
Chen, Y., Zhou, C., Alshameri, A., Zhou, S., Ma, Y., Sun, T. & Yan, C. (2014) Effect of rice hulls additions and calcination conditions on the whiteness of kaolin. Ceramics International, 40, 1175111758.CrossRefGoogle Scholar
Cullivan, J., Williams, R. & Cross, R. (2003) Understanding the hydrocyclone separator through computational fluid dynamics. Chemical Engineering Research and Design, 81, 455466.Google Scholar
Flores-Segura, J.C., Reyes-Cruz, V.E., Legorreta-Garcìa, F., Hernández-Cruz, L. & Veloz-Rodríguez, M. (2012) Purification of kaolin clays employing electrochemical techniques. Pp. 145154 in: Recent Developments in Metallurgy, Materials, and Environment (Pech-Canul, M.I., Leal Cruz, A.L., Rendón Angeles, J.C. & Gutiérrez, C.A., editors). CINVESTAV IPN, Mexico City, Mexico.Google Scholar
Flores-Segura, J.C., Savadogo, O., Oishi, K., Reyes-Cruz, V.E. & Veloz-Rodríguez, M.A. (2016) Electrodeposition of iron from kaolin clay and the effect of mass transport. Journal of New Materials for Electrochemical Systems, 19, 103107.Google Scholar
Flores-Segura, J.C., Reyes-Cruz, V.E., Pérez-Bueno, J.D., Lozada-Ascencio, E.M. & Legorreta-García, F. (2017) Characterization and electrochemical treatment of kaolin. Applied Clay Science, 146, 264269.CrossRefGoogle Scholar
Forbus, E.S., Gantt, G.E., Willis, M.J. & Young, R.H. (1993) European Patent No. EP0693043A1. 1993-04-06. Retrieved from https://patents.google.com/patent/EP0693043A1 (accessed 1 March 2022).Google Scholar
González, J. & Ruiz, M. (2006) Bleaching of kaolins and clays by chlorination of iron and titanium. Applied Clay Science, 33, 219229.CrossRefGoogle Scholar
Hernández-Hernández, R.A., Legorreta-García, F., Hernández-Cruz, L.E. & Bedolla-Jacuinde, A. (2015) Kaolin bleaching by leaching using phosphoric acid solutions. Journal of the Mexican Chemical Society, 59, 198202.Google Scholar
Houghton, R.W. & Kuhn, T. (1974) Mass-transport problems and some design concepts of electrochemical reactors. Journal of Applied Electrochemistry, 4, 173190.CrossRefGoogle Scholar
Langenbeck, K. (1908) US Patent No. US893590. 1907-09-17. Retrieved from https://patents.google.com/patent/US893590A (accessed 1 March 2022).Google Scholar
Lee, J. & Selman, J.R. (1982) Effects of separator and terminal on the current distribution in parallel-plate electrochemical flow reactors. Journal of Electrochemical Society, 129, 16701678.Google Scholar
Li, Y. (2014) CN Patent No. CN104030307B. 2014-05-16. Retrieved from https://patents.google.com/patent/CN104030307B (accessed 1 March 2022).Google Scholar
Li, S. (2017) Introduction to electrochemical reaction engineering. Pp. 599651 in: Reaction Engineering. Butterworth-Heinemann, Oxford, UK.CrossRefGoogle Scholar
Li, H., Jiao, X. & Zhou, J. (2013) The present status and the prospect of research on kaolin's de-ironing and bleaching technology. Journal of Advances in Chemistry, 2, 4249.CrossRefGoogle Scholar
Lim, E.C.L., Chen, Y.-R., Wang, C.-H. & Wu, R.-M. (2010) Experimental and computational studies of multiphase hydrodynamics in a hydrocyclone separator system. Chemical Engineering Science, 65, 64156424.CrossRefGoogle Scholar
Liu, Z., Wainright, J., Huang, W. & Savinella, R. (2004) Positioning the reference electrode in proton exchange membrane fuel cells: calculations of primary and secondary current distribution. Electrochimica Acta, 49, 923935.CrossRefGoogle Scholar
Low, C., Roberts, E. & Walsh, F. (2007) Numerical simulation of the current, potential and concentration distributions along the cathode of a rotating cylinder hull cell. Electrochimica Acta, 52, 38313840.CrossRefGoogle Scholar
Lu, X., Zhu, Y., Jiang, R., Huang, Y. & Jiang, G. (2006) Research on removal of iron and titanium from kaolin by electrochemical method. Journal of China University of Mining & Technology, 3, 254258.Google Scholar
Ma, S. & Li, F. (2006) Experimental study on the purifying bleaching kaolin fine tailings with organic acids. Inorganic Chemicals Industry, 10. Retrieved from http://en.cnki.com.cn/Article_en/CJFDTotal-WJYG200610008.htm (accessed 1 March 2022).Google Scholar
Maynard, J., Millman, N. & Iannicelli, J. (1969) A method for removing titanium dioxide impurities from kaolin. Clays and Clay Minerals, 17, 5962.CrossRefGoogle Scholar
Melo-López, A.A., Veloz-Rodríguez, M., Reyes-Cruz, V., Urbano-Reyes, G., Cobos-Murcia, J. & Legorreta-García, F. (2018) Electrochemical purification of kaolinitic for removing Fe and Ti oxides applying an ultrasonic pre-treatment. Applied Clay Science, 162, 461468.Google Scholar
Nadebaum, P. & Fahidy, T.Z. (1980) Design of electrochemical reactors via a sequential factorial costing technique. Journal of Applied Electrochemistry, 10, 1324.Google Scholar
Okada, H., Mitsuhashi, K., Ohara, T., Whitby, E.R. & Wada, H. (2007) Computational fluid dynamics simulation of high gradient magnetic separation. Separation Science and Technology, 40, 15671584.CrossRefGoogle Scholar
Panzhong, W., Tao, Z., Haiman, X. & Jingsi, Y. (2010) Study on de-ironing and bleaching process of kaolin. China Powder Science and Technology, 3. Retrieved from http://en.cnki.com.cn/Article_en/CJFDTotal-FTJS201003022.htm (accessed 1 March 2022).Google Scholar
Pentrák, M., Madejová, J. & Komadel, P. (2018) Acid and alkali treatment of kaolins. Clay Minerals, 44, 511523.CrossRefGoogle Scholar
Pérez, T., Ponce de León, C., Walsh, F. & Nava Montes de Oca, J. (2015) Simulation of current distribution along a planar electrode under turbulent flow conditions in a laboratory filter-press flow cell. Electrochimica Acta, 154, 352360.CrossRefGoogle Scholar
Raghavan, P., Chandrasekhar, S., Vogt, V. & Gock, E. (2004) Separation of titaniferous impurities from kaolin by high shear pretreatment and froth flotation. Applied Clay Science, 25, 110120.Google Scholar
Reyes-Cruz, V.E. & Flores-Segura, J.C. (2015) MX Patent No. MX/E/2015/035230, 2016-10-31. Retrieved from https://worldwide.espacenet.com/publicationDetails/originalDocument?CC=MX&NR=2015006239A&KC=A&FT=D&ND=4&date=20161031&DB=EPODOC&locale=en_EP (accessed 1 March 2022).Google Scholar
Reyes-Cruz, V.E., Cobos-Murcia, J.A., Veloz-Rodríguez, M.A.-G., Melo-López, A.A. & García-Hernández, V. (2017) MX Patent No. MX/E/2017/092353. Retrieved from https://worldwide.espacenet.com/publicationDetails/originalDocument?CC=MX&NR=2017016144A&KC=A&FT=D&ND=3&date=20190524&DB=EPODOC&locale=en_EP (accessed 1 March 2022).Google Scholar
Rodríguez-Morales, E., Montes-Rodríıguez, J., Luna-Bustamante, A., Balderas-Puga, D. & Luna-González, C. (2020) Numerical study of carburizing and quenching thermochemical treatment of a drive shaft employing experiment design. Revista Mexicana de Ingeniería Química, 14, 405413.Google Scholar
Shelobolina, E., Pickering, S. & Lovley, D. (2005) Fe-cycle bacteria from industrial clays mined in Georgia, USA. Clays and Clay Minerals, 53, 580586.Google Scholar
Shengwu, Y., Yujuan, X., Jiang-feng, L., Baojun, Y., Yan, Y. & Bainian, W. (2012) CN Patent No. CN102583412A. Retrieved from https://patents.google.com/patent/CN102583412A/ko (accessed 1 March 2022).Google Scholar
Sulaymon, A.H. & Abbar, A.H. (2012) Scale-up of electrochemical reactors. Chapter 9 in: Electrolysis (Kleperis, J. & Linkov, V., editors). Intech Open, London, UK.Google Scholar
Teklay, A., Yin, C. & Rosendahl, L. (2016) Flash calcination of kaolinite rich clay and impact of process conditions on the quality of the calcines: a way to reduce CO2 footprint from cement industry. Applied Energy, 162, 12181224.Google Scholar
Thompson, T.D. (1982) US Patent No. US4451440A. Retrieved from https://patents.google.com/patent/US4451440A (accessed 1 March 2022).Google Scholar
Vázquez, A., Rodríguez, I. & Lázaro, I. (2012) Primary potential and current density distribution analysis: a first approach for designing electrocoagulation reactors. Chemical Engineering Journal, 179, 253261.Google Scholar
Walsh, F. & Reade, G. (1994) Design and performance of electrochemical reactors for efficient synthesis and environmental treatment. Part 1. Electrode geometry and figures of merit. Analyst, 119, 791796.CrossRefGoogle Scholar
Wang, Z., Li, H., Chen, H., Lv, J., Leng, H., Xiao, J. & Wang, S. (2021) Effects of grinding and dehydration on kaolin in a steam jet mill. Clay Minerals, 56, 7584.CrossRefGoogle Scholar
White, R.E., Bain, M. & Raible, M. (1983) Parallel plate electrochemical reactor model. Journal of Electrochemical Society, 130, 10371042.CrossRefGoogle Scholar
Yijun, Y., Bin, L. & Jing, S. (2012) CN Patent No. CN102874826B. Retrieved from https://patents.google.com/patent/CN102874826B (accessed 1 March 2022).Google Scholar
Yildirim, I., Pruett, R.J. & Meizanis, P.M. (2012) US Patent No. US20150259857A1. Retrieved from https://patents.google.com/patent/US20150259857A1 (accessed 1 March 2022).Google Scholar
Yin, Y. & Huang, Q. (2013) CN Patent No. CN103666008B. Retrieved from https://patents.google.com/patent/CN103666008B (accessed 1 March 2022).Google Scholar
Yishui, S (1989) Bleaching technology for removing iron by kaolin. CN Patent No. CN1041739A. Retrieved from https://worldwide.espacenet.com/patent/search/family/004857391/publication/CN1041739A?q=pn%3DCN1041739A (accessed 1 March 2022).Google Scholar
Yustres, A., López-Vizcaíno, R., Sáez, C., Cañizares, P., Rodrigo, M. & Navarro, V. (2018) Water transport in electrokinetic remediation of unsaturated kaolinite. Experimental and numerical study. Separation and Purification Technology, 192, 196204.CrossRefGoogle Scholar