Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-20T03:21:34.388Z Has data issue: false hasContentIssue false

Iron in Hydrothermal Clays from the Galapagos Spreading Centre Mounds: Consequences for the Clay Transition Mechanism

Published online by Cambridge University Press:  09 July 2018

M. D. Buatier
Affiliation:
Université Lille 1, U.F.R. des Sciences de la Terre, Lab. de Dynamique sédimentaire et structurale, 59655 Villeneuve d’Ascq
K. Ouyang
Affiliation:
Institut de Physique et Chimie des Materiaux et Centre de Recherche Nucléaire, 23 rue du Loess, 67037 Strasbourg cedex, France
J. P. Sanchez
Affiliation:
Institut de Physique et Chimie des Materiaux et Centre de Recherche Nucléaire, 23 rue du Loess, 67037 Strasbourg cedex, France

Abstract

Glauconite and Fe-smectite, which can be distinguished by their peculiar morphology and stacking sequences, coexist in the Galapagos Spreading Centre hydrothermal mounds. Analytical electron microscopy (AEM) data suggest that Fe is entirely in octahedral sites in Fe-smectite whereas glauconite is K-rich with Fe in tetrahedral and octahedral sites. However, the Mossbauer spectra, recorded at various temperatures for samples containing both smectite and glauconite, were satisfactorily analysed with three overlapping doublets corresponding to Fe in octahedral sites. The contradictory results obtained with the two methods are explained by the presence of small particles of iron oxide intimately associated with glauconite. These particles were detected in Mossbauer spectra obtained at 77 K and 4·2 K and were observed by transmission electron microscopy. Iron oxide is a secondary phase formed by alteration of smectite. These data are in good agreement with the hypothesis that the smectite-glauconite reaction, which occurs at 30 m and low temperature in the Galapagos hydrothermal mounds, is a dissolution-precipitation process, dissolution of Fe-rich smectite being followed by precipitation of glauconite and iron oxides.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Badaut, D., Besson, G., Decarreau, A. & Rautureau, M. (1985) Occurrence of a ferrous trioctahedral smectite in recent sediments of Atlantis II Deep, Red Sea. Clay Miner. 20, 389404.Google Scholar
Badaut, D., Decarreau, A. & Besson, G. (1992) Ferripyrophyllite and related Fe3+-rich 2:1 clays in recent deposits of Atlantis II Deep, Red Sea. Clay Miner. 27, 227244.CrossRefGoogle Scholar
Besson, G., Bookin, A.S., Daynyak, L.G., Rautureau, M., Tsipursky, S.I., Tchoubar, C. & Drits, V.A. (1983) Use of diffraction and Mossbauer methods for the structural and crystallochemical characterization of nontronite. J. Appl. Cryst. 16, 374383.Google Scholar
Bonnin, D., Čalas, G., Suquet, H. & Pezerat, H. (1985) Sites occupancy of Fe3+ in Garfield nontronite: A spectroscopic study. Phys. Chem. Miner. 12, 5564.CrossRefGoogle Scholar
Buatier, M., Clauer, J., Honnorez, J. & O'Neil, J.R. (1988) A genetic model for hydrothermal Fe-rich clay minerals from Galapagos Spreading Centre mounds: XRD, HRTEM, STEM and isotopic data. GSA meeting, Abstract with program, Denver, 72A199.Google Scholar
Buatier, M., Honnorez, J. & Ehret, G. (1989) Fe-smectite-glauconite transition in hydrothermal green clays from the Galapagos Spreading Centre, DSDP, hole 509B. Clays Clay Miner. 37, 532541.CrossRefGoogle Scholar
Buatier, M.D., Peacor, D.R. & O'Neil, J.R. (1992) Smectite-illite transition in Barbados accretionary wedge sediments: TEM and AEM evidence for dissolution/crystallization at low temperature. Clays Clay Miner. 40, 6580.Google Scholar
Cardile, C.M., Johnson, J.H. & Dickson, D.P.E. (1986) Magnetic ordering at 4-2 and 1-3 K in nontronites of different iron contents: A 57Fe Mossbauer spectroscopic study. Clays Clay Miner. 34, 233238.Google Scholar
Coey, J.M.D. (1984) Mossbauer spectroscopy of silicate minerals. Mossbauer Spectrosc. Appl. Inorg. Chem. 1, 443509.Google Scholar
Coey, J.M.D., Chukhrov, F.V. & Zvyagin, B.B. (1984) Cation distribution, Mossbauer spectra and magnetic properties of ferripyrophyllite. Clays Clay Miner. 32, 198204.Google Scholar
Daynyak, l.g. & Drits, V.A. (1987) Interpretation of Mossbauer spectra of nontronite, celadonite and glauconite. Clays Clay Miner. 35, 363372.Google Scholar
De Grave, E., Vandenbruwaene, J. & Elewaut, E. (1985) An 57Fe Mossbauer effect study on glauconite from different locations in Belgium and northern France. Clay Miner. 20, 171179.CrossRefGoogle Scholar
Drits, V.A. (1987) Electron Diffraction and High-Resolution Electron Microscopy of Mineral Structures. Springer-Verlag, Berlin.Google Scholar
Eggleton, R.A. (1987) The application of microbeam methods to iron minerals in soils. Pp. 165-202 in: Iron in Soils and Clay Minerals. (J.W. Stucki, B.A. Goodman & U. Schwertmann, editors). D. Reidel, Dordrecht.CrossRefGoogle Scholar
Ericsson, t., Linares, J. & Lotse, E. (1984) A Mossbauer study of dithionite/citrate/bicarbonate treatment on a vermiculite, a smectite and a soil. Clay Miner. 19, 8591.Google Scholar
Goodman, B.A. (1978) The Mossbauer spectra of nontronite: consideration of an alternative assignment. Clays Clay Miner. 26, 176177.CrossRefGoogle Scholar
Goodman, B.A., Russell, J.D., Fraser, A.R. & Woodhams, F.W.D. (1976) A Mossbauer and I.R. spectroscopic study of the structure of nontronite. Clays Clay Miner. 24, 5359.Google Scholar
Fieller-kallai, l. & Rozenson, I. (1981) The use of Mossbauer spectroscopy of iron in clay mineralogy. Phys. Chem. Miner. 7, 223238.CrossRefGoogle Scholar
Honnorez, J., Von Herzenr, P., Barettt, J., Becker, K., Bender, M.L., Bender, p.e.,borella, p.e.,hubberten, h.w., Jones, s.c., Karato, s.i., Laverne, c., Levi, s., Migdisov, a.a., Moorby, s.a. & Schrader, e.l. (1981) Hydrothermal mounds and young ocean crust of the Galapagos: Preliminary Deep Sea Drilling results, Leg 70. Geol. Soc. Amer. Bull. 92, 457472.Google Scholar
Honnorez, J. et al. (1983) Initial Reports DSDP 70, Washington (U.S. Govt. Printing Office), 481 p.Google Scholar
Honnorez, J., Karpoff, A.M. & TRAUTH BADAUT, D. (1983) Sedimentology, mineralogy and geochemistry of green clay samples from the Galapagos hydrothermal mounds, Holes 506,506C and 507D Deep Sea Drilling Project Leg 80. Pp. 221-224 in: Init. Repts. DSDP 70, (J. Honnorez et al., editors). U.S. Govt. Printing Office, Washington.Google Scholar
Hower, J., Eslinger, E.V., Hower, M.E. & Perry, E.A. (1976) Mechanism of burial metamorphism of argillaceous sediments: 1. Mineralogical and chemical evidence. Geol. Soc. Amer. Bull. 87, 725737.Google Scholar
Lear, P.R. & Stucki, J.W. (1987) Intervalence electron transfer and magnetic exchange in reduced nontronite. Clays Clay Miner. 35, 373378.Google Scholar
Luca, V. (1991) Detection of tetrahedral Fe3+ sites in nontronite and vermiculite by Mossbauer spectroscopy. Clays Clay Miner. 39, 467-77.Google Scholar
Mehra, O.P. & Jackson, M.L. (1960) Iron oxide removal from soils and clays by dithionite-citrate system buffered with sodium bicarbonate. Clays Clay Miner. 7, 317327.Google Scholar
Merino, J. & Oberlin, A. (1967) Electron-optical study of smectite. Clays Clay Miner. 15, 325.Google Scholar
Paquet, H., Duplay, j., Valleron-blanc, M.M. & Millot, G. (1987) Octahedral compositions of individual particles in smectite-palygorskite assemblages. Proc. Int. Clay Conf, Denver, 73-77.Google Scholar
Singer, A., Stoffer, P., Heller-kallai, L. & Szfranek, D. (1984) Nontronite in a deep sea core from the south Pacific. Clays Clay Miner. 32, 375383.Google Scholar
Stucki, J.W. & Tessier, D. (1991) Effects of iron oxidation state on the texture and structural order of Na-nontronite gels. Clays Clay Miner. 39, 137143.CrossRefGoogle Scholar
Thompson, G., Mottl, M.J. & Rona, P.A. (1985) Morphology, mineralogy and chemistry of hydrothermal deposits from the Tag area, 26°N mid-Atlantic ridge. Chem. Geol. 49, 243257.Google Scholar
Tixier, R. (1978) Microanalyse sur ēchantillon minces. Pp. 443-448 in: Microanalyse et Microscopie ā Balayage. Les editions de physique (S. Maurice, L. Meny & R. Tixier, editors), Orsay, France.Google Scholar
Tsipursky, S.I. & Drits, V. (1984) The distribution of octahedral cations in the 2:1 layers of dioctahedral smectites by oblique texture electron diffraction. Clay Miner. 19, 177192.CrossRefGoogle Scholar
Warren, E.A. & Ransom, B.L. (1992) The influence of analytical error upon the interpretation of chemical variation in clay minerals. Clay Miner. 27, 163210.Google Scholar