Hostname: page-component-5c6d5d7d68-qks25 Total loading time: 0 Render date: 2024-08-22T04:20:31.116Z Has data issue: false hasContentIssue false

Mineralogical changes associated with deep weathering of gabbro in Aberdeenshire

Published online by Cambridge University Press:  09 July 2018

I. R. Basham*
Affiliation:
Institute of Geological Sciences, 64-78 Gray's Inn Road, London WCI

Abstract

The distribution, profile morphology and mineralogy of deeply weathered gabbroic rocks in the basic igneous masses of Insch and Bogancloch, Aberdeenshire, have been studied. The saprolite is characterized by granular disintegration and spheroidal weathering with a relatively low degree of secondary mineral development. The upper part of the profile often shows evidence of mass movement and incorporation into overlying drift but below this zone the degree of alteration is generally uniform with depth. Feldspar and hornblende are largely unaffected, except by disintegration, but pyroxenes show varying degrees of weathering from the incipient development of amorphous iron oxides to replacement by reticulate networks or complete pseudomorphs of trioctahedral vermiculite. Biotite weathers to hydrobiotite and vermiculite, giving rise also, under certain conditions, to kaolinite-gibbsite vermiforms. The correspondence between occurrences of deep weathering and coarser textured biotite-bearing rocks can be related to the instability of this mineral. Consideration of the mineralogical changes found and the morphology of the profile of weathering suggest their formation under a warm, humid climatic regime, probably during the mid Tertiary times.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1974

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexander, L.T. & Cady, J.G. (1962) U.S. Dept Agric. Tech. Bull. 1282.Google Scholar
Augustithis, S.S. & Otteman, J. (1966) Chem. Geol. 1, 201.CrossRefGoogle Scholar
Basham, I.R. (1968) PhD thesis, University of Aberdeen.Google Scholar
Bisdom, E.B.A. (1967) Geologie Mijnb. 46, 333.Google Scholar
Cady, J.G. (1950) Proc. Soil. Sci. Soc. Am. 15, 337.Google Scholar
Coleman, N.T., LF. Roux, F.H. & Cady, J.G. (1963) Nature, Lond. 198, 409.Google Scholar
Delvigne, J. (1965) Pédogenèse en Zone Tropicale. O.R.S.T.O.M. Dunod, Paris.Google Scholar
Fitzpatrick, E.A. (1963) J. Soil Sci. 14, 33.CrossRefGoogle Scholar
Fitzpatrick, E.A. (1965) Nature, Lond. 207, 621.Google Scholar
Glentworth, R. (1944) Trans. R. Soc. Edinb. 61, 149.Google Scholar
Godard, A. (1965) Récherches de geomorphologie en Ecosse du nord-ouest. Pubi, de Ja Kaculté des Lettres de l'Univ. de Strasbourg, Paris.Google Scholar
Green, C.P. & Eden, M.J. (1971) Geoderma, 6, 315.CrossRefGoogle Scholar
Harrison, J.B. (1933) 77ie katamorphism of Igneous Rocks under Humid Tropical Conditions. Imperial Bureau of Soil Science, Rothamsted, Harpenden.Google Scholar
Hashimoto, I. & Jackson, M.L. (1960) Clays Clay Miner. 7th Conf., p. 102. Pergamon Press, New York.Google Scholar
Hendricks, D.M. & Whittig, L.D. (1968) J. Soil Sci. 19, 135.CrossRefGoogle Scholar
Kanno, I., Honjo, V., Arimura, S. & Tokudome, S. (1963) Bull. Kyushu agric. Exp. Stn, 9, 15.Google Scholar
Kato, Y. (1964) Soil Sci. PI. Nutr. 10, 258.Google Scholar
Kato, Y. (1965) Soil Sci. PI. Nutr. 11, 30.Google Scholar
Kirkman, J.H., Mitchell, B.D. & Mackenzie, R.C. (1966) Trans. R. Soc. Edinb. 66, 393.Google Scholar
Linton, D.L. (1955) Geol. J. 121, 470.Google Scholar
Mcaleese, D.M. (1958) J. Soil Sci. 9, 289.Google Scholar
Mitchell, B.D. & Mackenzie, R.C. (1954) Soil Sci. 77, 173.Google Scholar
Mitchell, B.D. & Mackenzie, R.C. (1959) Clay Miner. Bull. 4, 31.CrossRefGoogle Scholar
Mitsuda, T. (1960) J. Fac. Sci. Hokkaido Univ. Ser. IV. Geol. Min. 10, 431.Google Scholar
Muir, A. & Fraser, G.K. (1940) Trans. R. Soc. Edinb. 60, 233.Google Scholar
Nossin, J.J. & Levelt, W.M. (1967) Z. Geomorph. 11, 14.Google Scholar
Nyun, M.A. & Mccaleb, S.B. (1955) Soil Sci. 80, 27.Google Scholar
Ogg, W.G. (1935) Emp. J. exp. Agric. 3, 174.Google Scholar
Phemister, T.C. & Simpson, S. (1949) Nature, Lond. 164, 318.CrossRefGoogle Scholar
Read, H.H. (1966) Proc. Geog. Ass. Lond. 77, 73.Google Scholar
Smith, W.W. (1959) Min. Mag., 32, 324.Google Scholar
Smith, W.W. (1962) J. Soil Sci. 13, 202.Google Scholar
Stephen, I. (1952) J. Soil Sci. 3, 20.Google Scholar
Strakhov, N.M. (1967) Principles of Lithogenesis. Oliver & Boyd, Edinburgh.Google Scholar
Swindale, L.D. (1966) N.Z. Jl Sci. 9, 484.Google Scholar
Synge, F.M. (1956) Scott. Geog. Mag. 92, 129.Google Scholar
Wager, L.R. & Brown, G.M. (1968) Layered Igneous Rocks. Oliver & Boyd, Edinburgh,Google Scholar
Walker, G.F. (1949) Min. Mag. 28, 693.Google Scholar
Weinert, H.H. (1961) Nature, Lond. 191, 325.Google Scholar
Wilson, M.J. (1966) Nature, Lond. 210, 1188.Google Scholar
Wilson, M.J. (1967) Clay Miner. 7, 91.Google Scholar
Wilson, M.J. (1969) Scott. J. Geol. 5, 81.Google Scholar
Wilson, M.J. (1970) Clay Miner. 8, 291.Google Scholar