Hostname: page-component-5c6d5d7d68-tdptf Total loading time: 0 Render date: 2024-08-08T13:20:34.049Z Has data issue: false hasContentIssue false

Mineralogy of the <2 μm fraction of three mixed-layer clays from southern and central Tunisia

Published online by Cambridge University Press:  09 July 2018

H. Ben Rhaiem*
Affiliation:
LPM, Faculté des Sciences de Bizerte, 7021 Jarzouna, Tunisia
D. Tessier
Affiliation:
Station de Recherche du Sol, INRA, 78026 Versailles, France
A. Ben Haj Amara
Affiliation:
LPM, Faculté des Sciences de Bizerte, 7021 Jarzouna, Tunisia

Abstract

Three clay minerals from southern and central Tunisia were characterized. Both XRD quantitative analysis and a chemical method were used to determine the mineralogical and physico-chemical characteristics of the <2 μm clay fractions. The XRD, CEC and specific surface measurement analyses showed that the dominant phase in all samples is illite-smectite with kaolinite and traces of quartz also present. From quantitative XRD, the abundances of the minerals identified are consistent with the measured CEC, specific surface area and TG/DTA properties. Analysis by XRD also showed that the illite-smectite phases are composed of thin stacks (two to a maximum of ten layers per stack) of random illite-smectite and ordered (R1) illite-smectite. There is also some discrete illite.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beaulieu, J. (1979) Identification géotechnique des matériaux argileux naturels par la mesure de lew surface au moyen du bleu de méthylène. These 3ème cycle Univ. Orsay, France.Google Scholar
Borchardt, G.A. (1977) Montmorillonite and other smectite minerals. Pp. 293–330 in: Minerals in Soil Environments (Dixon, J.B. & Weed, S.B., editors). Soil Science Society of America, Madison, Wisconsin.Google Scholar
Brown, G. & Brindley, G.W. (1980) X-ray procedures for clay mineral identification. Pp. 305–359 in: Crystal Structures of Clay Minerals and their X-ray Identification (Brindley, G.W. & Brown, G., editors). Monograph 5, Mineralogical Society, London.Google Scholar
Burollet, P.F. (1956) Contribution á l'étude stratigraphique de la Tunisie centrale. Ann. Min. Géol. 18, 350.Google Scholar
Calvert, C.S., Palkowsky, D.A. & Pevear, D.R. (1989) A combined X-ray Powder Diffraction and chemical method for quantitative mineral analysis of geologic samples. Pp. 154–166 in: Quantitative Mineral Analysis of Clays (Pevear, D.R. & Mumpton, F.A., editors). Clay Minerals Society, Bloomington, Indiana.Google Scholar
Carter, D.L., Heilman, M.D. & Gonzalez, C.L. (1965) Ethylene glycol monoethyl-ether for determining surface area of silicate minerals. Soil Sci. 100, 356–360.Google Scholar
Ciesielski, H. & Sterckeman, T. (1997) Determination of cation exchange capacity and exchangeable cations in soils by means of cobalt hexamine trichloride. Effects of experimental conditions. Agronornie, 17, 1–7.Google Scholar
Cuadros, J. & Linares I (1995) Some evidence supporting the existence of polar layers in mixed-layer illite/ smectite. Clays Clay Miner. 43, 467–473.CrossRefGoogle Scholar
Dejou, J. (1987) La surface spécifique des argiles, sa mesure, relation avec la CEC et son importance en agronomie. Pp. 73–83 in: La Capacité d'Échange Cationique et la Fertilisation des Sols Agricoles (Amiet, Y., editor). Chambres d'Agriculture de Basse- Normandie, France.Google Scholar
Drits, V.A. (1975) The structural and crystallochemical features of layer-silicates. Pp. 35–51 in: Crystallochemistry of Minerals and Geological Problems (Kossovskaya, A.G., editor). Nauka, Novosibirsk, Russia.Google Scholar
Drits, V.A. & Tchoubar, C. (1990) X-ray Diffraction by Disordered Lamellar Structures: Theory and Application to Microdivided Silicates and Carbons. Springer Verlag, New York.Google Scholar
Greene-Kelly, R. (1952) A test for montmorillonite. Nature, 170, 1130.Google Scholar
Guyot, J. (1969) Mesure des surfaces spécifiques des argiles par adsorption. Ann. Agro. 20, 333–359.Google Scholar
Jamoussi, F. & Srasra, E. (1992) Mineralogy and geochemistry of smectitic clays of Gafsa area (south of Tunisia) and their industrial applications. Miner. Petrogr. Ada, XXXV-A, 135-145.Google Scholar
Mackenzie, R.C. (1962) SCIFAX DTA Data Index. Cleaver-Hume Press, London.Google Scholar
Mackenzie, R.C. (1970) Simple phyllosilicates based on gibbsite- and brucite-like sheets. Pp. 504–511 in: Differential Thermal Analysis (Mackenzie, R.C., editor). Academic Press, New-York.Google Scholar
Mauguin, C. (1928) Etude des micas au moyen des rayons X. Bull. Soc.fr. Miner. 51, 285–332.Google Scholar
Moore, D.M. & Reynolds, R.C. (1989) X-ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press, Oxford & New York.Google Scholar
Moussa, L., Srasra, E. & Bouzouita, K. (1992) Stabilisation of clay suspension used in Tunisian ceramics. Miner. Petrogr. Ada, XXXV-A, 147-159.Google Scholar
Plançon, A. (1981) Diffraction by layer containing different kinds of layers and stacking faults. J. Appl. Cryst. 14, 300–304.Google Scholar
Robert, M. & Tessier, D. (1974) Méthode de préparation des argiles des sols pour études minéralogiques. Ann. Agron. 25, 859–882.Google Scholar
Soljic, Z. & Marjanovic-Krajovan, V. (1968) Methode rapide de dosage de SiO2, Fe2O3, Al2O3, TiO2, CaO et MgO dans une bauxite. Analyse rapide de calcaire et de dolomite. Chimie Analytique, 50, 122.Google Scholar
Środoń, J. & Eberl, D.D. (1984) Illite. Pp. 495-544 in: Micas (exclusive of Hydrosilicates). Reviews in Mineralogy, 13. (Bailey, S.W., editor). Mineralogical Society of America, Washington DC, USA.Google Scholar
Środoń, J., Morgan, D.J., Elsinger, E.V., Eberl, D.D. & Karlinger, M.R. (1986) Chemistry of illite/smectite and end-member illite. Clays Clay Miner. 34, 368–378.Google Scholar
Tessier, D. (1984) Etude expérimental de l'organisation des matériaux argileux. Hydratation, gonflement et structuration au cours de la dessiccation et de la réhumectation. Doc. Sci. Thesis, Univ. Paris VII, INRA, Versailles, France.Google Scholar
Tessier, D. (1990) Behaviour and micro structure of clay minerals. Pp. 387–415 in: Soil Colloids and their Associations in Aggregates (De Boodt, M.F., Hayes, M. & Herbillon, A., editors). Plenum Press, New York.Google Scholar