Hostname: page-component-5c6d5d7d68-qks25 Total loading time: 0 Render date: 2024-08-18T20:17:39.237Z Has data issue: false hasContentIssue false

Physicochemical and Catalytic Properties of a Modified Natural Clinoptilolite

Published online by Cambridge University Press:  09 July 2018

A. Arcoya
Affiliation:
Instituto de Catálisis y Petroleoquímica, CSIC, Campus Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain
J. A. González
Affiliation:
Centro de Investigaciones Química, MINBAS, Washington 169, Cerro, La Habana, Cuba
N. Travieso
Affiliation:
Centro de Investigaciones Química, MINBAS, Washington 169, Cerro, La Habana, Cuba
X. L. Seoane
Affiliation:
Instituto de Catálisis y Petroleoquímica, CSIC, Campus Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain

Abstract

Samples of natural clinoptilolite modified by treatment with NH4Cl or HCl solutions, followed by thermal treatments, have been characterized, and their catalytic activity evaluated, in o-xylene isomerization and ethanol dehydration reactions. The substitution of the compensating cations by NH4+ does not produce structural changes in the original material, but it opens the channels and increases its acidity and thermal stability. The treatment with HCl increases both the acidity and the effective diameter of the channels and pores but it produces an important loss of zeolite phase. Calcination of the acidic forms above 973 K leads to the breakdown of the zeolite structure. Catalytic activity of the samples is related to the surface acidity. For the original and NH4Cl-treated samples, however, the conversion of o-xylene is limited by the access of the reactant inside the channels of the zeolite. A comparative study with modified sepiolite in dehydration of ethanol has also been performed.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barber, R.M. & Marki, M.B. (1964) Molecular sieve sorbents from clinoptilolite. Can. J. Chem.. 12, 14811487.Google Scholar
Barthomeuf, D. (1984) Acidic catalysis with zeolites. Pp. 317346 in: Zeolites: Science and Technology. Märtiņus Nijhoff Publ., The Hague.Google Scholar
Breck, D.W. (1974) Zeolites Molecular Sieves. Wiley- Interscience, New York.Google Scholar
Breck, R.C. (1980) Potential Uses of Natural and Synthetic Zeolites in Industry. Pp. 391422 in: The Properties and Applications of Zeolites. The Chemical Society, London.Google Scholar
Ceranic, T., Vuč, D., Drzaj, B. & Hočevar, S. (1985) Structural and thermal properties of exchanged forms of clinoptilolite from Zlatokop (Vranje), Yugoslavia. Pp. 359-365 in: Zeolites, Synthesis, Structure, Technology and Application. Elsevier, Amsterdam.Google Scholar
Corma, A. & Perez-Pariente, J. (1987) Catalytic activity of modified silicates: I. Dehydration of ethanol catalysed by acidic sepiolite. Clay Miner.. 22, 423433.Google Scholar
Dandy, A.J. & Nadiye-Tarbiruka, M.S. (1982) Surface properties of sepiolite from Amboseli, Tanzania, and its catalytic activity for ethanol decomposition. Clays Clays Miner. 30, 347352.Google Scholar
Fernandez Alvarez, T. (1972) Activacion de la sepiolita con acido clorhidrico. Bol. Soc. Esp. Ceram. Vidr.. 11, 365374.Google Scholar
Galabova, I.M. & Haralampiev, G.A. (1979) Oxygen enrichment of air on alkaline forms of clinoptilolite. Pp. 121132 in: The Properties and Application of Zeolites. Chemical Society, London.Google Scholar
Galu, E., Gottardi, G., Mayer, H., Preisinger, A. & Passaglia, E. (1983) The structure of potassium- exchanged heulandite at 293, 373 and 593 K. Acta Cryst. B39, 189197.Google Scholar
Gonzalez, J.A., Romanosky, B.V. & Topchieva. (1982) Catalytic properties of natural zeolites. I. Conversion of aromatic hydrocarbons. Kinet. Katal.. 23, 14991503.Google Scholar
Gonzalez, J.A., Travieso, N., Balmayor, M., Arcoya, A. & Seoane, X.L. (1988) Activated Catah'tica de una clinopti- lolita de Tasajeras (Cuba). Adas del, X. Simposio Iheroamericano de Catalisis, Guanajuato (Mexico), 605611.Google Scholar
Guisnet, N. & Gnep, N.S. (1984) Zeolites as catalysts in xylene isomerization processes. Pp. 571582 in: Zeolites Science and Technology. Märtiņus Nijhoff Publ., The Hague.Google Scholar
Jacobs, P.A. (1977) Carboniogenic Activity of Zeolites. Elsevier, Amsterdam.Google Scholar
Jacobs, P.A. (1982) Acid zeolites: an attempt to develop unifying concepts. Catal. Rev. Sci. Eng. 24, 415444.Google Scholar
Jacobs, P.A. & Martens, J.A. (1986) Exploration of the void size and structure of zeolites and molecular sieves using chemical reactions. Pp. 2332 in: New Developments in Zeolite Science and Technology. Elsevier, Amsterdam.Google Scholar
Knozinger, H. & Konen, R. (1966) The dehydration of alcohols over alumina. J. Catal.. 5, 264270.Google Scholar
Koyama, K. & Takeuchi, Y. (1977) Clinoptilolite: the distribution of potassium atoms and its role in thermal stability. Z. Kris.. 145, 216239.Google Scholar
Miklosy, E., Papp, J. & Kallo, D. (1983) Xylene iosomeriza- tion on H-mordenites and H-clinoptilolites, Zeolite. 3, 139147.Google Scholar
Rabo, J.A., Pickert, P.T., Stamires, D.N. & Boyle, J. (1961) Molecular sieve catalysts in hydrocarbon reactions. Proc. 2nd Int. Cong. Cat.. 2, 20552073.Google Scholar
Rodriguez, G. (1987) Propiedades fisicoquimicas y aplica- ciones industriales de la clinoptilolita natural. PhD thesis, Univ. La Habana, Cuba.Google Scholar
Roque-Malherbe, R., Diaz-Aguila, C., Regera-Ruiz, E., Fundora-Lliteras, J., Lopez-Colado, L., & Hernan- dez-Velez, M. (1990) The state of iron in natural zeolites: A Mössbauer study. Zeolite. 10, 685689.Google Scholar
Sakoh, H., Nitta, M. & Aomura, K. (1985) Catalytic activity and selectivity of modified clinoptilolites for conversion of methanol to light olefins. Appl. Catal.. 16, 249253.Google Scholar
Spojakina, A., Tsolovski, I., Kostova, N., Popov, T., Krustév, S. & Shopov (1985) Study of the properties of clinoptilolite modified by transition metal ions. Pp. 367373 in: Zeolites, Synthesis, Structure, Technology and Applications. Elsevier. Amsterdam.Google Scholar
Tsitsishviu, G.V. (1973) Physicochemical properties of high silica L and clinoptilolite zeolites. Pp. 291298 in: Molecular Sieves. ACS, Washington DC.Google Scholar
Tsitsishvili, G.V. (1979) Natural Zeolites, pp. 37-19. Metsnierebra, Tbilisi.Google Scholar
Venuto, P.B. & Landys, P.S. (1968). Organic catalysis over crystalline aluminosilicates. Adv. Catal. 18, 259371.Google Scholar
Ward, J.W. (1984) Molecular sieve catalysts. Pp. 272388 in: Applied Industrial Catalysis 3, Academic Press, London.Google Scholar
Ward, J.W. & Hansford, R.C. (1969). The nature of active sites on zeolites. IX. Sodium hydrogen zeolite. J. Catal. 13, 364372.Google Scholar