Hostname: page-component-7bb8b95d7b-w7rtg Total loading time: 0 Render date: 2024-09-13T04:15:29.475Z Has data issue: false hasContentIssue false

Rare earth elements in different size fractions of a marine quick clay from Ullensaker, and a till from Upper Numedal, Norway

Published online by Cambridge University Press:  09 July 2018

Elen Roaldset*
Affiliation:
Department of Geology, University of Oslo, Postbox 1047, Blindern, Oslo 3, Norway

Abstract

The distribution of rare earth elements (REE) in two different sediments, a marine clay and a till, was found to be dependent both on grain size and mineralogical composition. In the marine clay the REE content was highest in the coarsest fraction; in the till REE were markedly enriched in the finest fraction. Detrital and authigenic origins for different size fractions have been attributed on the basis of REE contents.

Résumé

Résumé

La répartition des terres rares dans deux sédiments différents, une argile marine et une argile glaciaire, s'est avérée dépendre à la fois de la granulométrie et de la composition minéralogique. Dans l'argile marine la teneur en terres rares est plus élevée dans la fraction des grains les plus gros; dans l'argile glaciaire les fractions les plus fines sont nettement enrichies en terres rares. On a pu préciser les origines détritique ou locale pour les fractions de diverses granulométries en se fondant sur les teneurs en terres rares.

Kurzreferat

Kurzreferat

Es wurde festgesellt, daß die Verteilung von seltenen Seltenen-Erden-Elementen (REE) in zwei verschiedenen Sedimenten, einem marinen Ton und einem Till, sowohl von der Korngröße als auch von der mineralischen Zusammensetzung abhängig ist. In den marinen Tonen war der REE-Gehalt in den gröbsten Fraktionen am höchsten. Im Till wurden die Seltenen-Erden in der feinsten Fraktion bemerkenswert angereichert. Detritische und authigene Herkunft für verschiedene Korngrößenfraktionen wurden als Grund für die REE-Gehalte angesehen.

Resumen

Resumen

La distribución de elementos de tierras raras en dos sedimentos distintos, una arcilla marina y una arcilla glaciar, se ha hallado que depende de la granulometría y de la composición mineralógica. En la arcilla marina el contenido de elementos de tierras raras era el más alto en la fracción más gruesa; en la arcilla glaciar los elementos de tierras raras estaban marcadamente enriquecidos en la fracción más fina. Se han atribuído orígenes detríticos y autígenos para fracciones de diferentes tamaños sobre la base de los contenidos de elementos de tierras raras.

Type
Hommage à Jean Chaussidon
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1979

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Armands, G (1972) Stockh. Conn. Geol. 27, 1.Google Scholar
Balashov, YU. A., Ronov, A.B., Migdisov, A.A. & Turanskaya, N.V. (1964) Geochem. Int. 10, 951.Google Scholar
Balashov, YU. A. & Kazakov, G.A. (1968) Geochem. Int. 5, 607.Google Scholar
Berry, R.W. & Jorgensen, P (1969) Clay Miner. 8, 201.CrossRefGoogle Scholar
Berry, R.W. & Jorgensen, P (1971) Eng. Geol. 5, 73.Google Scholar
Coryell, CD., Chase, J.W. & Winchester, J.W. (1963) J. geophys. Res. 68, 559.Google Scholar
Cullers, R.L., Chaudhuri, S, Arnold, B, Lee, M & Wolf, C.W. (1975) Geochim. Cosmochim. Act. 39, 1691.Google Scholar
Davis, J.C. (1973) Statistics and data analysis in Geology. John Wiley, New York.Google Scholar
Dypvik, H & Brunfelt, A.O. (1976) Sedimentolog. 23, 363.Google Scholar
Haskin, L.A., Frey, F.A., Schmitt, R.A. & Smith, R.H. (1966) Physics and Chemistry of the Earth (Editors, LH. Ahrens, F. Press, S.K. Runcorn & H.C. Urey), 7, 167.Google Scholar
Haskin, L.A. & Morris, R.V. (1973) Trans. Amer. geophys. Unio. 54, 504.Google Scholar
Haskin, L.A., Wildeman, T.R. & Haskin, M.A. (1968) J. Radioanal. Chem. 1, 337.Google Scholar
Inman, D.L. (1952) J. sedim. Petrol. 22, 125.Google Scholar
Kazakov, G.A., BALASHOV YU.A. & Bratishko, RKH. (1976) Geokhimi. 5, 758.Google Scholar
Kraeft, U (1972) G-I-T, Fachzeitschrift f'iir das Laboratoriu. 16, 679.Google Scholar
Landstróm, O, Samsahl, K & Wenner, C.G. (1967) Report AE-296, AB Atomenergi, Sthlm., SweDen.Google Scholar
Larsen, L (1977) Cand.real. Thesis, University of Oslo.Google Scholar
Maksimovic, Z & Roaldset, E (1976) Travaux du Comité international pour I'etuDe Des Bauxites, Des hydroxyDes d'Aluminiu. 13, 199.Google Scholar
Masuda, A (1962) J. Earth Sci. 10, 173.Google Scholar
Nicholls, G.D., Graham, A.L., Williams, E & Wood, M (1967) Anal. Chem. 39, 584.CrossRefGoogle Scholar
Pettijohn, F.J. (1975) Sedimentary Rocks (3rd. ed.) Harper & Row, New York.Google Scholar
Prestvik, T & Roaldset, E (1978) Geochem. J. 12, 89.Google Scholar
Roaldset, E (1973) Litho. 6, 349.Google Scholar
Roaldset, E & Christie, O.H.J. (1975) Schw. Min. Petr. 55, 191.Google Scholar
Roaldset, E & Rosenqvist, ITH. (1971) Bull. Grpefr. Argiles. 23, 191.CrossRefGoogle Scholar
Ronov, A.B., BALASHOV Yu.A. & Migdisov, A.A. (1968) Geochem. Int. 14, 1.Google Scholar
Ronov, A.B., BALASHOV YU.A., GIRIN YU.P., Bratishko, R.K.H. & Kazakov, G.A. (1974) Sedimentolog. 21, 171.CrossRefGoogle Scholar
Rosenqvist, ITH. (1975) Clays Clay Miner. 23, 153.CrossRefGoogle Scholar
Spirn, R.V. (1965) PhD Thesis, Massachusetts Institute of Technology.Google Scholar
Taylor, S.R. (1965) Geochim. Cosmochim. Act. 29, 1243.CrossRefGoogle Scholar
Turekian, K.K. & Wedepohl, K.H. (1961) Bull geol. Soc. Am. 72, 175.Google Scholar
Wedepohl, K.H. (1971) Physics and Chemistry of the Earth (Eds, LH. Ahrens, F. Press, S.K. Runcorn & H.C. Urey) 8, 303333, Pergamon Press, Oxford.Google Scholar