Hostname: page-component-77c89778f8-m42fx Total loading time: 0 Render date: 2024-07-19T07:29:42.188Z Has data issue: false hasContentIssue false

Shape selectivity in low-temperature reactions of C6-alkenes catalysed by a Cu2+-exchanged montmorillonite

Published online by Cambridge University Press:  09 July 2018

J. M. Adams
Affiliation:
Edward Davies Chemical Laboratories, University College of Wales, Aberystwyth SY23 1NE, UK
A. Bylina
Affiliation:
Edward Davies Chemical Laboratories, University College of Wales, Aberystwyth SY23 1NE, UK
S. H. Graham
Affiliation:
Edward Davies Chemical Laboratories, University College of Wales, Aberystwyth SY23 1NE, UK

Abstract

The reactions of ten C6-alkenes over a Cu2+-montmorillonite catalyst have been examined between room temperature and 100°C. The reaction products depend upon inter alia the branching in the alkene, the position of the double bond, and the temperature. Hex-2-ene, cis and trans-4-methyl-pent-2-ene and 4-methyl-pent-1-ene do not react at all, whereas 2-methyl-pent-1-ene and 2-methyl-pent-2-ene and 3,3-dimethyl-but-1-ene form alcohols below ∼40°C and dimers at higher temperatures. Hex-1-ene forms the di-2,2′-hexyl ether.

Résumé

Résumé

Les réactions de dix alcènes en C6 furent étudiées en présence de montomorillonite-Cu2+ comme catalyseur pour des températures allant de l'ambiante à 100°C. Les produits de réaction dépendent, entre autres facteurs, des ramifications des alcènes, de la position de la double liaison et de la température. Hexène 2, cis et trans méthyl-4-pentène-2 et méthyl-4-pentène-1 ne réagissent pas, alors que méthyl-2-pentène-1 et diméthyl-3, 3-butène 1 forment des alcools en dessous de 40°C et des dimènes à plus haute température. Hexène 1 forme le 2,2′-dihexylether.

Kurzreferat

Kurzreferat

Die Reaktionen von 10 C6-Alkenen über Cu2+-Montmorillonit als Katalysator wurden zwischen Zimmertemperatur und 100°C untersucht. Die Reaktionsprodukte hängen u.a. von den Verzweigungen in den Alkenen, der Lage der Doppelbindungen und der Temperatur ab. Hex-2-en, cis- und trans-4-methyl-pent-2-en und 4-methyl-pent-1-en reagieren überhaupt nicht, wogegen 2-methyl-pent-1-en, 2-methyl-pent-2-en und 3,3-dimethylbut-1-en unter 40°C Alkohol bilden und bei höheren Temperaturen dimerisieren. Hex-1-en bildet di-2,2′-hexyl Äther.

Resumen

Resumen

Se han estudiado las reacciones de diez alquenos-C6 con un catalizador de montmorillonita-Cu+2, entre temperatura ambiente y 100°C. Los productos de reacción dependen, entre otras cosas, del punto de unión de las cadenas en el alqueno, de la posición del doble enlace y de la temperatura. El hexa-2-eno, cis y trans-4-metil-pent-2-eno y el 4-metil-pent-1-eno no reaccionan en absoluto, mientras que el 2-metil-pent-1-eno, el 2-metil-pent-2-eno y el 3,3-dimetil-but-1-eno forman alcoholes por debajo de los 40°C y dímeros a temperaturas más altas. El hexa-1-eno forma el di-2,2′'-hexil eter.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, J.M., Graham, S.H., Reid, P.I. & Thomas, J.M. (1977a) Chemical conversions using sheet silicates: ready of diphenylethylene. JCS Chem. Comm. 67. Google Scholar
Adams, J.M., Reid, P.I. & Walters, M.J. (1977b) Cation exchange capacities of clays. School Sci. Rev. 722724.Google Scholar
Adams, J.M., Davies, S.E., Graham, S.H. & Thomas, J.M. (1978a) Ready production of benzophenone from diphenylethylene catalysed by a synthetic hectorite. JCS Chem. Comm. 930931.CrossRefGoogle Scholar
Adams, J.M. Ballantine, J. A., Graham, S.H., Laub, R.J., Purnell, J.H., Reid, P.I., Shaman, W.Y.M. & Thomas, J.M. (1978b) Organic synthesis using sheet silicate intercalates: low temperature conversion of olefin to secondary ether. Angew. Chemic Int. Ed. 17, 282283.Google Scholar
Adams, J.M., Ballantine, J.A., Graham, S.H., Laub, R.J., Purnell, J.H., Reid, P.I., Shaman, W.Y.M. & Thomas, J.M. (1979a) Selective chemical conversions using sheet silicate intercalates: low temperature addition of water to 1-alkenes. J. Catal. 58, 239252.CrossRefGoogle Scholar
Adams, J.M., Davies, S.E., Graham, S.H. & Thomas, J.M. (1979b) Hydrogen exchange between 9,10-dihydroanthracene and 1,1-diphenylethylene over a synthetic hectorite. JCS Chem. Comm. 527528.Google Scholar
Adams, J.M., Clement, D.E. & Graham, S.H. (198la) Synthesis of methyl t-butyl ether (MTBE) from methanol and isobutene using a clay catalyst. Clays Clay Miner. (in press).Google Scholar
Adams, J.M., Bylina, A. & Graham, S.H. (1981b) Conversion of 1-hexene to di-2-hexyl ether using a Cu2+-smectite catalyst. J. Catal. (in press).CrossRefGoogle Scholar
Adams, J.M., Clement, D.E. & Graham, S.H. (1981c) Low temperature reaction of alcohols to form t-butyl ethers using clay catalysts. J. Chem. Res. S254255.Google Scholar
Ballantine, J.A., Davies, M., Purnell, J.H., Rayanakorn, M., Thomas, J.M. & Williams, K.J. (1981) Chemical conversions using sheet silicates: facile ester synthesis by direct addition of acids to alkenes. J.C.S. Chem. Comm. 89.CrossRefGoogle Scholar
Bylina, A., Adams, J.M., Graham, S.H. & Thomas, J.M. (1980) Chemical conversions using sheet silicates: a simple method for producing methyl t-butyl ether (MTBE). J.C.S. Chem. Comm. 10031004.CrossRefGoogle Scholar
Donor, H.E. & Mortland, M.M. (1969) Benzene complexes with Cu(II) montrnorillonite. Science, 166, 14061407.CrossRefGoogle Scholar
Fripiat, J.J. & Cruz-Cumplido, M.I. (1974) Clays as catalysts for natural processes. Ann. Rev. Earth planet. Sci. 2, 239356.CrossRefGoogle Scholar
Ittel, S.D. & Ibers, J.A. (1976) Coordination of unsaturated molecules to transition metals. Adv. Organometallic Chem. 14, 3361.CrossRefGoogle Scholar
Kaplan, H. (1966) One step process of acid activating mineral clays and alkylating phenolic compounds with an alkene hydrocarbon. U.S. Patent 3,287,422.Google Scholar
Lucatello, L.G. & Smith, G.E. (1972) Catalytic preparation of o-alkylatedphenols. U.K. Patent 1,265,152.Google Scholar
Mortland, M.M. & Halloran, L.J. (1976) Polymerization of aromatic molecules on smectite. J. Soil Sci. Soc. Am. 40, 367370.CrossRefGoogle Scholar
Mortland, M.M. & Mellor, J.L. (1954) Conductometric titration of soils for cation exchange capacity. Proc. Soil Sci. Soc. Am. 18, 363.Google Scholar
Mortland, M.M. & Pinnavaia, T.J. (1971) Formation of copper(II)-arene complexes on the interlamellar surfaces of montmorillonite. Nature Phys. Sci. 229, 7577.CrossRefGoogle Scholar
Pinnavaia, T.J. & Mortland, M.M. (1971) Interlamellar metal complexes of layer silicates. I. Copper(II)-arene complexes on montmorillonite. J. Phys. Chem. 75, 39573962.CrossRefGoogle Scholar
Pinnavaia, T.J., Hall, P.L., Cady, S.S. & Mortland, M.M. (1974) Atomic radical cation formation on the intracrystal surfaces of transition metal layer lattice silicates. J. Phys. Chem. 78, 994999.CrossRefGoogle Scholar
Poutsma, M.L. (1976) Mechanistic considerations of hydrocarbon transformations catalysed by zeolites. Pp.437528 in: Zeolite Chemistry and Catalysis (Rabo, J. A., editor), ACS monograph 171, Washington.Google Scholar
Rupert, J.P. (1973) Electron spin resonance spectra of interlamellar copper(II)-arene complexes in montmorillonite. J. Phys. Chem. 77, 784790.Google Scholar