Hostname: page-component-5c6d5d7d68-vt8vv Total loading time: 0.001 Render date: 2024-08-27T04:12:36.808Z Has data issue: false hasContentIssue false

A study of a long-spacing mica-like mineral

Published online by Cambridge University Press:  09 July 2018

W. F. Cole*
Affiliation:
Division of Building Research, Commonwealth Scientific and Industrial Research Organization, Melbourne, Australia

Abstract

An interstratified clay mineral from Surges Bay, Tasmania, described by Cole & Carthew (1953) as containing a random stacking of illite and montmorillonite in the ratio of 3:2 and a regular stacking of illite and montmorillonite in the ratio of 1 : 1 is re-examined, after purification, and a new interpretation is made of the X-ray diffraction effects in terms of a single complex stacking model. The Fourier transform method of analysis used with an appropriate layer structure factor shows that the interstratification is produced by a three component stacking of 18% single mica layers (A), 10% double mica layers (ĀĀ) and 72% allevardite-like layers (ĀB̄) in which the A and ĀĀ layers are never together. This leads to the conclusion that the near regular interstratification of the mineral is due to structural and/or compositional variation from layer to layer within the parent crystals as suggested by Sudo, Hayashi & Shimoda (1962) to explain similar mineral types occurring in Japan.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1966

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allegra, G. (1961a) Acta crystallogr. 14, 535.Google Scholar
Allegra, G. (1961b) Nuovo Cim. 21, 786.Google Scholar
Allegra, G. (1961c) NUovo Cim. 22, 661.Google Scholar
Allegra, G. (1962) Nuovo Cim. 23, 502.Google Scholar
Allegra, G. (1964) Ada crystallogr. 17, 587.Google Scholar
Bradley, W.F. (1964) Soil Clay Mineralog. (Rich, C. I. and Kunze, G. W.. editors). Chap. III, p. 113. University of North Carolina Press.Google Scholar
Brindley, G.W. (1956) Am. Miner. 41, 91.Google Scholar
Brindley, G.W. & Sandalakj, Z. (1963) Am. Miner. 48, 138.Google Scholar
Brown, G. & Weir, A.H. (1963) 1st Int. Clay Conf., Proc. (Rosenqvist, I. Th. and Graff- Petersen, P., editors). Vol. 1, p. 27. Pergamon Press, Oxford.Google Scholar
Carthew, A.R. & Cole, W.F. (1953) Aust. J. Instrum. Technol. 9. 23.Google Scholar
Cesari, M., Morelli, G.L. & Favretto, L. (1965) Acta crystallogr. 18, 189.Google Scholar
Cole, W.F. (1961) Clay Miner. Bull. 4, 312.Google Scholar
Cole, W.F. & Carthew, A.R. (1953) Pap. Proc. R. Soc. Tasm. 87, 1.Google Scholar
Cole, W.F. & Hosking, J.S. (1957) Differential Thermal Investigation of Clay. (Mackenzie, R. C., editor). Chap. X. p. 248. Mineralogical Society, London.Google Scholar
Cole, W.F. & Lancucki, C.J. (1966) Acta crystallogr. 21, 836.Google Scholar
Cole, W.F., Lewis, R.E. & Lancucki, C.J. (1965) Aust. J. Instrum. Technol. 21, 105.Google Scholar
Cole, W.F. & Rowland, N.M. (1961) Am. Miner. 46, 304.Google Scholar
Greene-Kelly, R. (1957) Differential Thermal Investigation of Clay. (Mackenzie, R. C., editor). Chap. V, p. 140. Mineralogical Society. London.Google Scholar
Hendricks, S.B. & Teller, E. (1942) J. chem. Phys. 10, 147.Google Scholar
Heystek, H. (1954) Mineralog. Mag. 30, 400.Google Scholar
Jackson, W.W. & West, J. (1933) Z. Kristallogr. 85, 160.Google Scholar
Jagodzinski, H. (1949a) Acta crystallogr. 2, 201.Google Scholar
Jagodzinski, H. (1949b) Acta crystallogr. 2, 208.Google Scholar
Jagodzinski, H. (1949c) Acta crystallogr. 2, 298.Google Scholar
Jagodzinski, H. (1954) Acta crystallogr. 7, 17.Google Scholar
Kakinoki, J. & Komura, Y. (1952) J. phys. Soc. Japan. 7, 30.Google Scholar
Kakinoki, J. & Komura, Y. (1954a) J. phys. Soc. Japan. 9, 169.Google Scholar
Kakinoki, J. & Komura, Y. (1954b) J. phys. Soc. Japan. 9, 177.Google Scholar
Kakinoki, J. & Komura, Y. (1962) Acta crystallogr. 15, 292.Google Scholar
Klug, H.P. & Alexander, L.E. (1954) X-ray Diffraction Procedures. p. 377. Wiley, New York.Google Scholar
Korolev, YU.M. (1960) Kristallografiya. 5, 891.Google Scholar
Loughnan, F.C. & Craig, D.C. (1961) Aust. J. Sci. 23, 374.Google Scholar
Macewan, D.M.C. (1948) Trans. Faraday Soc. 44, 349.Google Scholar
Macewan, D.M.C. (1953) Nature, Lond. 171, 616.Google Scholar
Macewan, D.M.C. (1956a) Clays Clay Miner. 4, 166.Google Scholar
Macewan, D.M.C. (1956b) Kolloidzeitschrift. 149, 96.Google Scholar
Macewan, D.M.C. (1958) Kolloidzeitschrift. 156, 61.Google Scholar
Macewan, D.M.C., Ruiz Amil, A. & Brown, G. (1961) The X-ray Identification and Crystal Structures of Clay Mineral. (Brown, G., editor). Chap. XL, p. 393. Mineralogical Society, London.Google Scholar
Merino, J. (1949) Acta crystallogr. 2, 371.Google Scholar
Radoslovich, E.W. (1960) Acta crystallogr. 13, 919.Google Scholar
Reynolds, R.C. JR. (1965) Am. Miner. 50, 990.Google Scholar
Rodriguez Gallego, M. & Alías Pérez, L.J. (1965) Clay Miner. 6, 119.Google Scholar
Sato, M. (1965) Nature, Land. 208, 70.Google Scholar
Schoen, R. (1962) Am. Miner. 47, 1384.Google Scholar
Shimoda, S. & Sudo, T. (1960) Am. Miner. 45, 1069.Google Scholar
Sudo, T., Hayashi, H. & Shimoda, S. (1962) Clays Clay Miner. 9, 378.Google Scholar
Walker, G.F. & Cole, W.F. (1957) Differential Thermal Investigation of Clay. (Mackenzie, R. C., editor), Chap. VII, p. 191. Mineralogical Society. London.Google Scholar
Wilson, A.J.C. (1942) Proc. phys. Soc. A. 180, 277.Google Scholar