Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-07-03T20:53:17.822Z Has data issue: false hasContentIssue false

Thermally induced mineral and chemical transformations in calcareous mudstones around a basaltic dyke (Perthus Pass, southern Massif Central, France). Possible implications as a natural analogue of nuclear waste disposal

Published online by Cambridge University Press:  09 July 2018

C. Henry*
Affiliation:
Laboratoire Hydr ASA, CNRS-UMR 6532, Université de Poitiers, 40 Av. du Recteur Pineau, 86022 Poitiers Cedex, France
J.-Y. Boisson
Affiliation:
Institut de Radioprotection et de Sûreté Nucléaire, BP 6, 92265 Fontenay-aux-Roses Cedex, France
A. Bouchet
Affiliation:
Etudes Recherches Matériaux, Espace 10, République 2, Rue Albin Haller, 86000 Poitiers, France
A. Meunier
Affiliation:
Laboratoire Hydr ASA, CNRS-UMR 6532, Université de Poitiers, 40 Av. du Recteur Pineau, 86022 Poitiers Cedex, France

Abstract

A mixed-layer illite-smectite, illite-rich calcareous mudstone intruded by a basaltic dyke at the Perthus Pass (southern Massif Central, France) allows us to study the transformation of clays subjected to a brief thermal gradient. X-ray diffraction, scanning electron microscopy, electron microprobe and atomic absorption spectroscopy analyses were performed on samples at variable distances from the mudstone-dyke contacts.

A roughly similar evolution is seen on both sides of the dyke: quartz, calcite, kaolinite and illite disappear; Ca-silicates, albite and saponite-beidellite form, late meteoric halloysite crystallizes in open fractures.

Chemical and mineralogical transformations are related to heat diffusion from the dyke. Theoretical calculations highlight the influence of the dyke orientation. The mineralogical reactions observed in rocks are similar to those observed in experimental conditions. The formation of new swelling phases with a high retention capacity linked to a short duration, large-temperature increase, should constitute a positive process for Repository Performance Assessment.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alabouvette, B., Bodeur, Y., Mattei, J., Lopez, M., Rançon, J.P. & Paloc, H. (1987) Carte Géologique de la France à 1/50 000, Le Caylar. Feuille 962, Ed. BRGM, Orléans, France.Google Scholar
Alabouvette, B., Arrondeau, J.P., Aubague, M., Bodeur, Y., Dubois, P., Mattei, J., Paloc, H. & Rançon, J.P. (1988) Notice explicative de la feuille Le Caylar à 1/ 50 000. Ed. BRGM, Orléans, France.Google Scholar
Altaner, S.P. (1989) Examination of models of smectite illitization. Clay Minerals Society 26th Annual Meeting, Sacramento, California, USA, p. 13.Google Scholar
Beaufort, D., Papapanagiotou, P., Patrier, P., Fouillac, A.M. & Traineau, H. (1996) I/S and C/S mixed layers, some indicators of recent physical-chemical changes in active geothermal systems: the case study of Chipilapa (El Salvador). 21st Workshop on Geothermal Reservoir Engineering, Stanford, California, USA, pp. 35-42.Google Scholar
Beaufort, D., Berger, G., Lacharpagne, J.C. & Meunier, A. (2001) An experimental alteration of montmorillonite into a di+trioctahedral smectite assemblage at 100 and 200°C. Clay Minerals, 36, 211225.Google Scholar
Best, M.G. (1982) Igneous and Metamorphic Petrology. Freeman & Co., San Francisco, USA.Google Scholar
Boles, J.R. & Franks, S.G. (1976) Clay diagenesis in Wilcox Sandstone of southwest Texas, implications of smectite diagenesis on sandstone cementation. Journal of Sedimentary Petrology, 49, 5570.Google Scholar
Bouchet, A. (1992) Mise au point d’un programmme de détermination automatique des minéraux argileux. Colloque de Rayons X Siemens, Comptes Rendus, 2, 5261.Google Scholar
Bouchet, A., Lajudie, A., Rassineux, F., Meunier, A. & Atabek, R. (1992) Mineralogy and kinetics of alteration of a mixed-layer kaolinite/smectite in nuclear waste disposal simulation experiment (Stripa site, Sweden). Applied Clay Science, 7, 113123.Google Scholar
Bouchet, A., Boisson, J.Y., Kemp, S.J., Parneix, J.C., Pellegrini, R. & Rochelle, C. (2002) Mineralogical and chemical changes due to volcanic intrusion into clay formations. Pp. 111120 in: Eighth EC Natural Analogue Working Group Meeting (von Maravic, H. & Alexander, W.R., editors). EUR 19118 EN.Google Scholar
Brindley, G.W. & Brown, G. (editors) (1980) Crystal Structures of Clay Minerals and their X-ray Identification. Monograph 5, Mineralogical Society, London.Google Scholar
Brookins, D.G. (1987) Natural and archaeological analogues: a review. In: Natural analogue in radio-active waste disposal. Session I ‘Why natural analogues?’ CEC radioactive waste management series (Côme, B. & Chapman, N.A., editors). EUR 11037.Google Scholar
Cassagnabère, A. (1998) Caractérisation et interprétation de la transition kaolinite —dickite dans les réservoirs à hydrocarbures de Froy et Rind (Mer du Nord, Norvège). Thesis, Université de Poitiers, France.Google Scholar
Chapman, N.A. (1994) The geologist's dilemma predicting the future behaviour of buried radioactive wastes. Terra Nova, 6/1, 5-19.Google Scholar
Correia, M.J. & Maury, R.C. (1975) Effets thermiques, minéralogiques et chimiques de l’intrusion d’un dyke basaltique dans le Toarcien des Causses. Bulletin du Centre de Recherches de Pau SNPA, 9, 245259.Google Scholar
Deer, W.A., Howie, R.A. & Zussman, J. (1969) An Introduction to the Rock-Forming Minerals. Longmans, London.Google Scholar
Esposito, K.J. & Whitney, G. (1995) Thermal effects of thin igneous intrusions on diagenetic reactions in a Tertiary Basin of Southwestern Washington. US Geological Survey Bulletin, 2085-C, 137.Google Scholar
Gastaud, J., Campredon, R. & Feraud, G. (1983) Les systèmes filoniens des Causses et du Bas Languedoc (Sud de la France): géochronologie, relations avec les paléocontraintes. Bulletin de la Société géologique de France, 5, 737746.Google Scholar
Goffé, B., Murphy, W.M. & Lagache, M. (1987) Experimental transport of Si, Al and Mg in hydro thermal solutions: an application to vein mineralisation during high-pressure, low-temperature metamorphism in the French Alps. Contributions to Mineralogy and Petrology, 97, 438450.Google Scholar
Guex, J. (1972) Répartition biostratigraphique des ammonites du Toarcien moyen de la bordure sud des Causses (France) et révision des ammonites décrites et figurées par Monestier 1931. Eclogae Geologicae Helvetiae, 65, 611645.Google Scholar
Hanson, R.F., Zamora, R. & Keller, W.D. (1981) Nacrite, dickite and kaolinite in ore deposit in Mexico. Clays and Clay Minerals, 29, 451453.Google Scholar
Hofmann, U. & Klemen, R. (1950) Verlust der Austauschfahigkeit von Lithiumionen an Bentonit durch Erhitzung. Zeitung Anorganische Allgemeine Chemie, 262, 604615.Google Scholar
Hower, J., Eslinger, E.V., Hower, M.E. & Perry, E.A. (1976) Mechanisms of burial metamorphism of argillaceous sediments —1. Mineralogical and chemical evidence. Geological Society of America Bulletin, 87, 725737.2.0.CO;2>CrossRefGoogle Scholar
Inoue, A. & Utada, M. (1983) Further investigations of a conversion series of dioctahedral micas/smectites in the Shinzan hydrothermal alteration area, northeast Japon. Clays and Clay Minerals, 31, 401412.Google Scholar
Jackson, M.L. (1964) Soil Chemical Analysis, 3 rd edition. Prentice Hall Inc., New Jersey, USA.Google Scholar
Jaeger, J.C. (1959) Temperature outside a cooling intrusive sheet. American Journal of Science, 257, 4454.Google Scholar
Kamei, G., Arai, T., Yusa, Y., Sasaki, N. & Sakuramoto, Y. (1990) Estimation of illitization rate of smectite from the thermal history of Murakami deposit, Japan. Materials Research Society Symposium Proceedings, 176, 657663.Google Scholar
Kamei, G., Yusa, Y. & Sasaki, N. (1992) Natural analogue study on the long-term durability of bentonite. Time-temperature condition and water chemistry on illitization at the Murakami deposit, Japan. Materials Research Society Symposium Proceedings, 257, 505512.Google Scholar
Lanson, B. (1997) Decomposition of experimental X-ray diffraction patterns (profile fitting): a convenient way to study clay minerals. Clays and Clay Minerals, 45, 132146.Google Scholar
Mathieu, Y. & Velde, B. (1989) Identification of thermal anomalies using clay mineral composition. Clay Minerals, 24, 591602.Google Scholar
Maurel, P. (1962) Etude minéralogique et géochimique des formations argileuses de Saint-Affrique (Aveyron). Bulletin de la Société française de Minéralogie et de Cristallographie, 85, 329374.Google Scholar
Metz, P. (1970) Experimentelle Untersuchung des Metamorphose von kieselig dolomitischen Sedimenten. II. Die Bildungs Bedingungen des Diopsids. Contributions to Mineralogy and Petrology, 28, 221250.Google Scholar
Metz, P. & Winkler, H.G.F. (1964) Experimentelle Untersuchung des Diopsidbildung aus Tremolit, Calcit und Quartz. Sonderdruck aus der Zeitschrift für die Naturwissenschaften, 19, 460462.CrossRefGoogle Scholar
Meunier, A. & Velde, B. (1989) Solid solutions in I/S mixed-layer minerals and illite. American Mineralogist, 74, 11061112.Google Scholar
Meunier, A., Velde, B. & Griffault, L. (1998) The reactivity of bentonites: a review. An application to clay barrier stability for nuclear waste storage. Clay Minerals, 33, 187196.Google Scholar
Miller, W., Alexander, W., Chapman, N., McKinley, I. & Smellie, J. (2000) The Geological Disposal of Radioactive Waste and Natural Analogues: Lessons from Nature and Archaeology. Waste Management Series, vol. 2. Pergamon, Amsterdam.Google Scholar
Moore, D.M. & Reynolds, R.C. (1989) X-ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press, NewYork.Google Scholar
Newman, A.C.D. & Brown, G. (1987) The chemical composition of clays and clay minerals. Pp. 1128 in: Chemistry of Clays and Clay Minerals (Newman, A.C.D., editor). Monograph 6, Mineralogical Society, London.Google Scholar
Pellegrini, R., Horseman, S., Kemp, S., Rochelle, C., Boisson, J.-Y., Lombardi, S., Bouchet, A. & Parneix, J.-C. (1999) Natural analogues of the thermo-hydromechanical response of clay barriers. Final Report, EUR 19114 EN.Google Scholar
Perry, E.A. & Hower, J. (1970) Burial diagenesis in Gulf Coast pelitic sediments. Clays and Clay Minerals, 18, 165177.Google Scholar
Pytte, A.M. (1982) The Kinetics of the Smectite to Illite Reaction in Contact Metamorphic Shales. Thesis, Darmouth College, Hanover, New Hampshire, USA.Google Scholar
Pytte, A.M. & Reynolds, R.C. (1989) The thermal transformation of smectite to illite. Pp. 133140. in: Thermal History of Sedimentary Basins: Methods and Case History (Naesser, N.D. & McCulloh, T.H., editors). Springer Verlag, Berlin.Google Scholar
Reynolds, R.C. (1980) Interstratified clay minerals. Pp. 249303 in: Crystal Structure of Clay Minerals and their X-ray Identification (Brindley, G.W. & Brown, G., editors). Monograph 5, Mineralogical Society, London.Google Scholar
Roubault, M., De La Roche, H. & Govindaraju, K. (1970) Etat actuel des études coopératives sur les standards géochimiques du CRPG Sciences de la Terre —Nancy, 4, 351395.Google Scholar
Środoń, J. & Eberl, D. (1984) Illite. Pp. 495544 in: Micas (Bailey, S.W., editor). Reviews in Mineralogy 13, Mineralogical Society of America.CrossRefGoogle Scholar
Steiner, A. (1968) Clay minerals in hydrothermally altered rocks at Wairakei, New Zeland. Clays and Clay Minerals, 16, 193213.Google Scholar
Velde, B. (1969) The compositional join muscovite-pyrophyllite at moderate pressures and temperatures. Bulletin de la Société française de Minéralogie et de Cristallographie, 92, 360368.Google Scholar
Velde, B. (1985) Clay Minerals: A Physico-chemical Explanation of their Occurrence. Developments in Sedimentology, 40, pp. 225251. Elsevier, New York.Google Scholar
Velde, B. (1995) Compaction and diagenesis. Pp. 220246 in: Origin and Mineralogy of Clays; Clays and the Environment (Velde, B., editor). Springer Verlag, Berlin.Google Scholar
Velde, B. & Vasseur, G. (1992) Estimation of the diagenetic smectite-to-illite transformation in the time—temperature space. American Mineralogist, 77, 967976.Google Scholar
Yamada, H., Nakasawa, H., Yoshioka, K. & Fujita, T. (1991) Smectites in the montmorillonite-beidellite series. Clay Minerals, 26, 359369.Google Scholar