Hostname: page-component-7479d7b7d-jwnkl Total loading time: 0 Render date: 2024-07-12T17:36:33.407Z Has data issue: false hasContentIssue false

Etude d'une nacrite intercalée par du dimethylsulfoxide et n-methylacetamide

Published online by Cambridge University Press:  09 July 2018

A. Ben Haj Amara
Affiliation:
Laboratoire de physique des matériaux, Ecole Normale Superieure de Bizerte, 7021 Zarzouna, Tunisie
J. Ben Brahim
Affiliation:
Laboratoire de physique des matériaux, Ecole Normale Superieure de Bizerte, 7021 Zarzouna, Tunisie
G. Besson
Affiliation:
CRMD Université d'Õrléans, 45067 Orléans cedex 2, France
C.H. Pons
Affiliation:
CRMD Université d'Õrléans, 45067 Orléans cedex 2, France

Resume

Une nacrite est intercalée par deux composés organiques polaires: le diméthylsulfoxide (DMSO) et le n-méthylacétamide (NMA). Les deux solvants ont des moments dipolaires très voisins (4 debyes) mais des constantes diélectriques différentes (49 pour le DMSO et 179 pour le NMA). L'intercalation du NMA est plus rapide que celle du DMSO. Les deux complexes homogènes obtenus sont étudiés par diffraction des rayons X, spectroscopie infrarouge et ATD. L'étude par spectroscopie IR a montré que la nacrite expansée par du DMSO se comporte comme la kaolinite expansée par le même solvant. Dans le cas de la nacrite intercalée par du NMA, trois nouvelles bandes d'absorption dues aux vibrations de valence des OH liés par pont hydrogène avec le groupement C=O et situées respectivement à 3500, 3543 et 3589 cm−1 apparaissent. La fréquence v(N-H) du NMA est intermédiaire entre celles du liquide et d'une solution diluée, indiquant une liaison par pont hydrogène probablement avec les oxygènes de la couche tétraédrique du silicate. La diffraction des rayons X sur des échantillons orientés nous a permis d'obtenir 13 réflexions 00l pour chaque complexe. Une étude quantitative, par transformée de Fourier monodimensionnelle dans la direction perpendiculaire au plan du feuillet, a permis de déterminer le nombre de molécules organiques intercalées (une molécule par Si2Al2O5(OH)4) et leur orientation dans l'espace interlamellaire. L'ATD a montré par ailleurs que le complexe Nac.DMSO est plus stable que le complexe Nac.NMA.

Abstract

Abstract

Nacrite was intercalated with two polar organic compounds: Dimethylsulphoxide (DMSO) and n-methylacetamide (NMA), which have similar dipolar moments (4 debyes) but different dielectric constants (49 for the DMSO and 179 for the NMA). The rate of the intercalation has been measured and found to increase in order NMA>DMSO. The interlamellar homogeneous nacrite complexes have been studied by XRD, IR and DTA. The IR nacrite-DMSO spectrum shows that interaction between the nacrite layer and DMSO is similar to that obtained in the kaolinite-DMSO complexes. The IR spectrum of the nacrite-NMA complex shows three absorption bands at 3500, 3543 and 3589 cm−1. The v(N-H) frequencies of the NMA in the complex are intermediate between those of dilute non-polar solution and the liquid. This could arise from a degree of association between N-H and O-Si. By XRD, 13 basal reflections were obtained for each complex. The direct method involving a monodimensional electron density projection on the z-axis for each homogeneous complex enabled us to find the amount of organic compound per unit-cell (one molecule per Si2Al2O5(OH)4) and their orientation in the interlamellar space. The DTA showed that the Nac.DMSO complex is more stable than the Nac.NMA complex.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, J.M. (1976) The crystal structure of a dickite: formamide intercalate Al2Si2O5(OH)4-HCONH2 . Acta Cryst. B32, 11801183.Google Scholar
Adams, J.M. (1979) The crystal structure of a dickite: nmethylformamide intercalate Al2Si2O5(OH)4-HCONHCH3 . Acta Cryst. B35, 10841088.Google Scholar
Bellamy, L.J. & Owen, A. (1969) A simple relationship between the infrared stretching frequencies and the hydrogen bond distances in crystals. Spedrochimica Acta 25, 329333.Google Scholar
Blount, A.M., Threagold, L.M. & Bailey, S.W. (1969) Refinement of the crysal structure of nacrite. Clays Clay Miner. 17, 185194.CrossRefGoogle Scholar
Bottcher, C.J.F. (1973) Theory of Electric Polarization. Volume 1: Dieledrics in Static Fields., Elsevier Scientific Publishing Company, 281 pp.Google Scholar
Chapeville, F. & Clauser, H. (1976) Biochimie. Hermann: Collection Enseignement des sciences 17, 190 pp.Google Scholar
Cruz, M., Laycock, A. & White, J.L. (1969). Perturbation of OH groups in intercalated kaolinite donoracceptor complexes. I-Formamide-, methylformamide-, and dimethylformamide-kaolinite complexes. Proc. Int. Clay Conf., Tokyo, 1, 775789.Google Scholar
Deeds, C.T., Van Olphen, H. & Bradley, W.F. (1966) Intercalation and interlayer hydration of minerals of the kaolinite group. Proc. Int. Clay Conf., Jerusalem, 1, 295296.Google Scholar
Farmer, V.C. (1974) The layer silicates. Pp. 331-363 in: The Infrared Spectra of Minerals (Farmer, V.C., editor). Mineralogical Society, London.Google Scholar
Hall, P.L, Harisson, R., Hayes, M.H.B. & Tuk, J.J. (1983) Particle orientation distributions and stacking arrangements in size-fractionated montmorillonite measured by neutron and X-ray diffraction. J. Chem. Soc, Faraday Trans. 79, 16871700.CrossRefGoogle Scholar
Jacobs, H. (1971) Etude des hydroxyles de la kaolinite par spectroscopie infrarouge. These de doctorat en sciences agronomiques, Uni. Cath. de Louvain, Belgium.Google Scholar
Jacobs, H. & Streckx, M. (1971) A condition to the study of the intercalation of dimethylsulfoxide in the kaolinite lattice. Proc. Reunion Hispano-Belge. Miner. Arg., Madrid, 154-160.Google Scholar
Laby, R.H. & Walker, G.F. (1970) Hydrogen bonding in primary alkyl-vermiculite complexes. J. Phys. Chem., 74, 23692373.Google Scholar
Lippman, F. (1970) Functions describing preferred orientation in flat aggregates of flake-like clay minerals and in other axially symmetric fabrics. Contrib. Mineral. Pet. 25, 7794.CrossRefGoogle Scholar
Matra-Arjona, A., Ruiz-Amil, A. & Inaraja-Martin, E. (1970) Kinetics of dimethyl-sulfoxide intercalation into kaolinite: an X-ray diffraction study. Proc. Reunion Hispano Belga de Minerals de la arcilla, C.S.I.C. Madrid, 115-120.Google Scholar
Mclachlan, R.D. & Nyquist, R.A. (1964). An infrared study of some a-substituted secondary amides in solution. Spectrochimica Ada 20, 13971406.Google Scholar
Mizuchima, SAN-ICHIRO (1954). Structure of Molecules and Internal Rotation. Pp. 118–121 in Academic Press Inc., Publishers New York.Google Scholar
Olejnik, S., Alymore, L.A.G, Posner, A.M. & Quirk, J.P. (1968) Infrared spectra of kaolin mineral-dimethylsulfoxide complexes. J. Phys. Chem. 72, 241–249.CrossRefGoogle Scholar
Olejnik, S., Posner, A. M. & Quirk, J.P. (1971) The spectra of interlamellar kaolinite-amide complexes. I-The complex of formamide, n-methylformamide and dimethylformamide. Clays Clay Miner. 19, 8394.Google Scholar
Raupach, M., Barron, P.F. & Thompson, J.G. (1987) Nuclear magnetic resonance, infrared, and X-ray powder diffraction study of dimethylsulfoxide and dimethylselenoxide intercalates with kaolinite. Clays Clay Miner. 35, 208219.CrossRefGoogle Scholar
Reynolds, R.C. (1986) The Lorentz-polarisation factor and preferred orientation in oriented clay aggregates. Clays Clay Miner. 34, 359367.Google Scholar
Taylor, R.M. & Norrish, K. (1966) The measurement of orientation distribution and its application to quantitative X-ray diffraction analysis. Clay Miner. 6, 127142.CrossRefGoogle Scholar
Tchoubar, C., PlançON, A., Ben Brahim, J., Clinard, C. & Sow, C. (1982) Caract6dstiques structurales des kaolinites d6sordonn6es. Bull. Mineral. 11)5, 477491.Google Scholar
Thomas, R., Shomaker, C.B. & Klaas, E. (1966) The molecular and crystal structure of dimethyl sulfoxide, (H3C)2SO. Acta Cryst. 21, 1220.Google Scholar
Thompson, J.G. (1985) Interpretation of solid state 13C and 295i nuclear magnetic resonance spectra of kaolinite intercalates. Clays Clay Miner., 33, 73180.Google Scholar
Thompson, J.G. & Cuff, C. (1985) Crystal structure of kaolinite dimethylsulfoxide intercalate. Clays Clay Miner. 33, 490500.CrossRefGoogle Scholar
Wada, K. (1965) Intercalation of water in kaolin minerals. Am. Miner. 50, 924941.Google Scholar