Hostname: page-component-7479d7b7d-c9gpj Total loading time: 0 Render date: 2024-07-12T01:41:59.987Z Has data issue: false hasContentIssue false

Filtration and standardized properties of Jebel Om El Khecheb clay (Tunisia) and Wyoming bentonite

Published online by Cambridge University Press:  09 July 2018

S. Laribi
Affiliation:
Laboratoire de Mécanique, Ecole Centrale Paris et CNRS UMR 8579, Grande Voie des Vignes, 92295 Châtenay-Malabry, France
J.-M. Fleureau*
Affiliation:
Laboratoire de Mécanique, Ecole Centrale Paris et CNRS UMR 8579, Grande Voie des Vignes, 92295 Châtenay-Malabry, France
N. Kbir-Ariguib
Affiliation:
Institut National de la Recherche Scientifique et Technique, BP95, 2050 Hammam-Lif, Tunisia

Abstract

The rheological and filtration properties of a Tunisian clay are presented and compared with those of Wyoming bentonite. The study was part of an evauation of Tunisian mining resources in general, and of the bentonitic deposits in particular. Qualitatively, the two clays exhibit the same rheological and filtration behaviour but quantitatively the properties of purified Wyoming bentonite are distinctly better at the same concentration. The difference can be related to the mineralogical structure and the presence of 13% illite in the Tunisian clay. Standard tests show that the rheological behaviour of the purified Tunisian clay is close to that of the raw Wyoming bentonite and conform to the American Petroluem Institute (A.P.I.) standards for medium-depth drilling formulations.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

AFNOR (1993) Sols: Reconnaissance et Essais — Détermination des limites d’Atterberg —Limite de liquidité à la coupelle —Limite de plasticité au rouleau. Association FranÇaise de Normalisation.Google Scholar
American Petroleum Institute (1969) Standard field procedure for testing drilling fluids. API Div. Proc., Dallas, Texas, RP 13B.Google Scholar
American Petroleum Institute (1990) Specification for oil-well drilling-fluid materials. Specification 13A, I, 1-3.Google Scholar
Benna, M., Kbir-Arguib, N., Clinard, C. & Bergaya, F. (2001) Static filtration of purified sodium bentonite clay suspensions. Effect of clay content. Applied Clay Sciences, 19, 103120.CrossRefGoogle Scholar
Bingham, E.C. (1922) Fluid and Plasticity. McGraw Hill, New York.Google Scholar
Blanc, R. & van Damme, H. (1995) Rheology of pastes. Pp. 129160 in: Mobile Particulate Systems (Guazzelli, E. and Oger, L., editors). Kluwer Academic Publishers, Dordrecht, The Netherlands.Google Scholar
Chen, F.H. (1988) Foundations on Expansive Soils. Developments in Geotechnical Engineering, 54, Elsevier Publishing Co., Amsterdam, 464 pp.Google Scholar
Chilingarian, G.V. & Vorabutr, P. (1983) Drilling and Drilling Fluids. Developments in Petroleum Science, 11 Elsevier, Amsterdam.Google Scholar
Coussot, P. (1994) Steady laminar flow of concentrated mud suspension in open channel. Journal of Hydraulic Research, 32, 535559.Google Scholar
Coussot, P. & Piau, J.-M. (1994) On the behaviour of fine mud suspensions. Rheologica Acta, 33, 175184.CrossRefGoogle Scholar
Coussot, P. & van Damme, H. (1997) Physico-chimie et rhéologie des mélanges argiles-eau. Pp. 169192 in: Des Ecoulements Naturels à la Dynamique du Tas de Sable. Introduction aux Suspensions en Géologie et en Physique. (Ildefonse, B., Allain, C. & Coussot, P., editors). Cemagref-Editions, Antony, France.Google Scholar
Grim, R.E. (1962) Applied Clay Mineralogy. McGraw-Hill Book Company, Inc, London.Google Scholar
Hentz, A. (1972) Forage Rotary, Groupe II, Leçon II, la Boue de Forage. Technip, Paris.Google Scholar
Herschel, W.H. & Bulkley, R. (1926) Measurement of consistency as applied to rubber- benzene solutions. American Society for Testing Materials, 26, 621633.Google Scholar
Lambe, T.W. & Whitman, R.V. (1973) Description of an assemblage of particules. Pp. 2939; Normal stress between soil particles. Pp. 5260 in: Soil Mechanics. Wiley & Sons, New York.Google Scholar
Laribi, S. (2003) Etude des propriétés physico-chimiques, rhéologiques et de filtration de deux argiles bentonitiques. PhD thesis, Ecole Centrale Paris, France.Google Scholar
Laribi, S., Fleureau, J.-M., Grossiord, J.-L. & Ariguib, N. (2005) Comparative yield stress determination for pure and interstratified smectite clays. Rheologica Acta, 44, 3, 262269.Google Scholar
Laribi, S., Fleureau, J.-M., Grossiord, J.-L. & Ariguib, N. (2006) Effect of pH on the rheological behavior of pure and interstratified smectite clays. Clays and Clay Minerals, 54, 2937.Google Scholar
Li, Y. (1996) Filtrations statistiques et dynamiques de différents systèmes argile, electrolyte, polymère. PhD thesis, University of Orléans, France.Google Scholar
Mouroux, P., Margon, P. & Pinte, J.-C. (1989) La Construction Economique sur Sols Gonflants. Manuels et Méthodes, 14, BRGM editions , France.Google Scholar
Qi, Y., Al-Mukhtar, M., Alcover, J.-F. & Bergaya, F. (1996) Coupling analysis of macroscopic and microscopic behavior in highly consolidated Nalaponite clays. Applied Clay Science, 11, 185197.CrossRefGoogle Scholar
Rajani, B. & Morgenstern, N. (1991) On the yield stress of geotechnical materials from the slump test. Canadian Geotechnical Journal, 28, 457462.Google Scholar
van Damme, H., Laroche, C. & Gatineau, L. (1987) Radial fining in viscoelastic media. An experimental study. Revue de Physique Appliquée, 22, 241252.Google Scholar
van Damme, H. (2002) L’eau et sa représentation. Pp. 2368 in: Mécanique des Sols non saturés (Coussy, O. & Fleureau, J.-M., editors). Hermès, Paris.Google Scholar
van Olphen, H. & Fripiat, J. (1977) Data Handbook for Clay Materials and other Non-metallic Minerals. Pergamon Press, Oxford, UK.Google Scholar
Yildiz, N., Erol, M., Baran, B., Sarikaya, Y. & Calimli, A. (1998) Modification of rheology and permeability of Turkish ceramic clays using sodium silicates. Applied Clay Science, 13, 6577.Google Scholar