Hostname: page-component-7479d7b7d-767nl Total loading time: 0 Render date: 2024-07-12T07:06:14.150Z Has data issue: false hasContentIssue false

Hydrothermal (200°C) synthesis and crystal chemistry of iron-rich kaolinites

Published online by Cambridge University Press:  09 July 2018

S. Petit
Affiliation:
Laboratoire de Pétrologie de la Surface, Université de Poitiers, 40, avenue du Recteur Pineau, 86022 Poitiers Cedex, France
A. Decarreau
Affiliation:
Laboratoire de Pétrologie de la Surface, Université de Poitiers, 40, avenue du Recteur Pineau, 86022 Poitiers Cedex, France

Abstract:

In order to study Al-Fe substitution, Fe-kaolinites were synthesized at 200°C from glasses (Si/(Al + Fe) = 1) with varying Fe content. XRD and IR spectroscopy showed that kaolinites with increasing Fe contents could be synthesized, and Mössbauer spectroscopy indicated that the iron is strictly ferric. Chemical analyses (STEM) of kaolinite particles determined up to almost 7% Fe2O3, which probably does not represent a structural limit. The effect of Fe3+ content is evident on growth kinetics and particle size of kaolinites, both decreasing with % Fe2O3. However, it is not possible to establish a general correlation between Fe content and percentage of structural defects. Acccording to IR spectroscopy, some synthesized Fe-rich kaolinites can have relatively good crystallinity.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ambrosi, J.P. & Nahon, D. (1986) Petrological and geochemical differentiation of lateritic iron crust profiles. Geoi, 57, 371–393.Google Scholar
Angel, B.R. & Hall, P.L. (1972) Electron spin resonance studies of kaolins. Proc. Int. Clay Conf. Madrid,, 4759.Google Scholar
Angel, B.R., Jones, J.P.E. & Hall, P.L. (1974) Electron spin resonance studies of doped synthetic kaolinites. I. Clay Miner., 10, 247–255.Google Scholar
Angel, B.R., Richards, K. & Jones, J.P.E. (1975) The synthesis, morphology, and general properties of kaolinites specifically doped with metallic ions, and defects generated by irradiation. Proc. Int. Clay Conf. Mexico City,, 297304.Google Scholar
Angel, B.R., Cuitler, A.H., Richards, K.S. & Vincent, W.E. (1977) Synthetic kaolinites doped with Fe2+ andFe3+ ions. Clays Clay Miner., 25, 381–383.CrossRefGoogle Scholar
Barrios, J., Plancon, A., Cruz, M.I. & Tchoubar, C. (1977) Qualitative and quantitative study of stacking faults in a hydrazine treated kaolinite–relationship with infrared spectra. Clays Clay Miner., 25, 422–429.Google Scholar
Bonnin, D., Muller, S. & Callas, G. (1982) Le fer dansles kaolins. Etude par spectrometries R.P.E., Mössbauer, EXAFS. Bull. Mineral., 105, 467–475.Google Scholar
Brindley, G.W. & Brown, G. (1980) Crystal Structures of Clay Minerals and their X-ray Identification. Mineralogical Society, London.Google Scholar
Brindley, G.W., Kao, C.C., Harrison, J.L., Lipsicas, M. & Raythatha, R. (1986) Relation between structural disorder and other characteristics of kaolinites and dickites. Clays Clay Miner., 34, 239–249.CrossRefGoogle Scholar
Calvert, C.S. (1981) Chemistry and mineralogy of iron substituted kaolinite in natural and synthetic systems. University Microfilms International,, 224p.Google Scholar
Cantinolle, P., Didier, P., Neunier, J.D. , Parron, C., Guendon, J.L., Bocquier, G. & Nahon, D. (1984) Kaolinites ferriferes et oxy-hydroxydes de fer et d'lumine dans les bauxites de Canonnettes (S.E. de la France). Clay Miner., 19, 125–135.CrossRefGoogle Scholar
Cases, J.M., Lietard, O., Yvon, J., Delon, J.F. (1982) Etude des propriétés cristallochimiques, morphologiques, superficielles de kaolinites désordonnées. Bull. Mineral., 105; 439455.Google Scholar
Cases, J.M., Cunin, P., Grillet, Y., Poinsignon, C. & Yvon, J. (1986) Methods of analysing morphology of kaolinites: relations between crystallographic and morphological properties. Clay Miner., 21, 55–68.CrossRefGoogle Scholar
Cuttler, A.H. (1980) The behaviour of a synthetic 57Fe-doped kaolinite ; Mössbauer and electron paramagnetic resonance studies. Clay Miner., 15, 429–444.CrossRefGoogle Scholar
Delvaux, B., Mestdagh, M.M., Vielvoye, L. & Herbillon AJ. (1989) XRD, IR and ESR study of experimental alteration of Al-nontronite into mixed-layer kaolinite/smectite. Clay Miner., 24, 617-630.Google Scholar
Dennefeld, F. (1970) Contribution a las synthese desphyllites atumineuses du type kaolin.Thesis, Univ. Strasbourg, France.Google Scholar
Desprairies, A. (1983) Relation entre le paramètre bdes smectites et leur contenu en fer et magnésium. Application a Tetude des sédiments. Clay Miner., 18, 165–175.Google Scholar
Farmer, V.C. (1974) The layer silicates. Pp. 331-365 in : The Infrared Spectra of Minerals(Farmer V.C., editor). Mineralogical Society, London.Google Scholar
Fripiat, J. J. & Gastuche, M.C. (1961) Reflexions sur les problèmes de synthèse. Coll. hit. CNRS, n°105, Genèse et Sythese des Argiles, Paris,, 207210.Google Scholar
Fysh, S.A., Cashion, J.D. & Clark, P.E. (1983) Mössbauer effect studies of iron in kaolin. I. Structural iron. Clays Clay Miner., 31, 285–292.Google Scholar
Goodman, B.A., Russell, J.D. & Fraser, A.R. (1976) A Mössbauer andl.R. spectroscopic study of the structure of nontronite. Clays Clay Miner., 24, 53–59.Google Scholar
Herbillon, A. J., Mestdagh, M.M., Vielvoye, L. & Derouane, E.G. (1976) Iron in kaolinite with special reference to kaolinite from tropical soils. Clay Miner., 11, 201–219.CrossRefGoogle Scholar
Hinckley, D.N. (1963) Variability in ‘cristallinity’ values among the kaolin deposits of the coastal plain of Georgia and south Carolina. Clays Clay Miner., 13, 229–235.Google Scholar
Hogg, C.S., Malden, P.J. & Meads, R.E., (1975) Identification of iron-containing impurities in natural kaolinites using the Mössbauer effect. Mineral Mag., 40, 89–96.Google Scholar
Janot, C., Gibert, H. & Tobias, C. (1973) Caractérisation de kaolinites ferriferes par spectrometrie Mössbauer. Bull. Sog. fr. Min. Crist., 96, 281–291.Google Scholar
Jefferson, D.A., Tricker, M.J. & Winterbottom, A.P. (1975) Electron-microscopic and Mössbauer spectroscopic studies of iron stained kaolinite minerals. Clays Clay Miner., 23, 355–360.Google Scholar
Jepson, W.B. & Rowse, J.B. (1975) The composition of kaolinite–an electron microscope microprobe study. Clays Clay Miner., 23, 310–317.Google Scholar
Jones, J.P.E., Angel, B.R. & Hall, P.L. (1974) Electron spin resonance studies of doped synthetic kaolinite. II. Clay Miner., 10, 257–269.CrossRefGoogle Scholar
De Kimpe, C., Gastuche, M.C. & Brindley, G.W. (1964) Low temperature synthesis of kaolin minerals. Am. Miner., 49, 1–16.Google Scholar
Kittrick, J.A. (1970) Precipitation of kaolinite at 25°C and 1 atm. Clays Clay Miner., 18, 261–267.Google Scholar
Komusinski, J., Stoch, L. & Dubiel, S.M. (1981) Application of electron paramagnetic resonance and Mössbauer spectroscopy in the investigation of kaolinite group minerals. Clays Clay Miner., 18, 261–267.Google Scholar
Kurkjian, C.R. & Sigety, E.A. (1968) Coordination of Fe3+ in glass. Phys. Chem. Glasses, 9, 23–30.Google Scholar
Levitz, P., Callas, G., Bonnin, D. & Legrand, A.P. (1980) Etude par spectroscopie Mössbauer du fer (III) dans des verres silicates multicomposants dMnteret géologique. Rev. Phys. Appl., 15, 1169–1173.CrossRefGoogle Scholar
Lietard, O. (1977) Contribution a Vetude desproprietesphysicochimiques, cristallographiques et morphologiques des kaolins. Thesis, Univ. Nancy, France.Google Scholar
Malden, P.J. & Meads, R.E. (1967) Substitution by iron in kaolinite. Nature, 215, 844–846.CrossRefGoogle Scholar
Meads, E. & Malden, P.J. (1975) Electron spin resonance in natural kaolinites containing Fe3+ and other transition metai ions. Clay Miner., 10, 313–345.CrossRefGoogle Scholar
Mendelovici, E., Yariv, S.H. & Villalba, R. (1979) Iron-bearing kaolinite in Venezuelan laterites. I. Infrared spectroscopy and chemical dissolution evidence. Clay Miner., 14, 323–331.CrossRefGoogle Scholar
Mestdagh, M.M., Vielvoye, L. & Herbillon, A.J. (1980) Iron in kaolinite: II The relationship between kaolinite cristallinity and iron content. Clay Miner., 15, 1–12.Google Scholar
Mestdagh, M.M., Herbillon, A.J., Rodique, L. & Rouxhet, P.G. (1982) Evaluation du role du fer structural sur la cristallinite des kaolinites. Bull. Mineral., 105, 457–466.Google Scholar
Nahon, D., Ambrosi, J.P., Decarreau, A. & Noack, Y. (1988) Fe3+ bearing kaolinites versus non Fe3+ bearing kaolinites : a possible distinction between supergene and hypogene origin. Cong. ICSOBA, Sao Paolo, Brazil, Abstract.Google Scholar
Pargamin, L., Lupis, C.H.P. & Flinn, P.A. (1972) Mössbauer analysis of the distribution of iron cations in silicate slags. Metali Trans., 3, 2093–2105.Google Scholar
Petit, S., Decarreau, A., Eymery, J.P. & Thomassin, J.H. (1988) Synthèse de kaolinites ferriques a 200°C. Comparaison avec les kaolinites d'altération supergène : teneur en fer, morphologie, cristallinité. C. R. Acad. Sc. Paris. II, 19611966.Google Scholar
Rengasamy, P., Krishna Murti, G.S.R. & Sarma, V.A.K. (1975) Isomorphous substitution of iron for aluminum in some soil kaolinites. Clay Clay Miner., 23, 211–214.Google Scholar
Russell, J.D. & Clark, D.R. (1978) The effect of Fe for Si substitution on the bdimension of nontronite. Clay Miner., 13, 133–137.Google Scholar
Stone, W.E.E. & Torres-sanchez, R.M. (1988) Nuclear magnetic resonance spectroscopy applied to minerals. Part 6.-Structural iron in kaolinites as viewed by proton magnetic resonance. J. Chem Soc., Faraday Trans., 84, 117132.CrossRefGoogle Scholar
Tchoubar, C. (1965) Formation de la kaolinite a partir d'albite altérée par l'eau a 200oC. Etude en microscopie et diffraction electroniques. Bull Soc. franç. Miner. Crist., 483518.Google Scholar
Van Oosterwyck-Gastuche, M.C. & La Iglesia, A. (1978) Kaolinite synthesis. II. A review and discussion of the factors influencing the rate process. Clays Clay Miner., 26, 409–417.Google Scholar