Article contents
Layer charge estimation of smectites using infrared spectroscopy
Published online by Cambridge University Press: 09 July 2018
Abstract
A new method of measuring the layer charge of smectites by IR spectroscopy is proposed based on the integrated intensity measurement of the band assigned to the ammonium fundamental ν4 mode of NH+4-exchanged clays. Measurements are made before and after Li fixation (Hofman & Klemen effect). These allow the quantitative determination of the total charge, equivalent to CEC, and tetrahedral and octahedral charge distribution in both dioctahedral and trioctahedral smectites.
- Type
- Research Article
- Information
- Copyright
- Copyright © The Mineralogical Society of Great Britain and Ireland 1998
References
Alvaro, R., Alba, M.D., Castro, M.A. & Trillo, J.M. (1994) Reversible migration of lithium in montmorillonites. J. Phys. Chem.
98, 7848–7853.Google Scholar
Ben Hadj-Amara, A., Besson, G. & Tchoubar, C. (1987) Caractéristiques structurales d'une smectite dioctaédrique en fonction de l'ordre-désordre dans la distribution des charges é1ectriques: I. Etudes des réflexions 001. Clay Miner.
22, 305–318.Google Scholar
Calvet, R. & Prost, R. (1971) Cation migration into empty octahedral sites and surface properties of clays. Clays Clay Miner.
19, 175–186.Google Scholar
Chourabi, B. & Fripiat, J.J. (1981) Determination of tetrahedral substitutions and interlayer surface heterogeneity from vibrational spectra of ammonium in smectites. Clays Clay Miner.
29, 260–268.Google Scholar
Delvaux, B., Mestdagh, M.M., Vielvoye, L. & Herbillon, A.J. (1989) XRD, IR and ESR study of experimental alteration of Al-nontronite into mixed-layer kaolinite/smectite. Clay Miner.
24, 617–630.Google Scholar
Ferriso, C.C. & Hornig, D.F. (1959) Absolute infrared intensities of the ammonium ion in crystals. J. Chem. Phys. 32, 1240-1245.Google Scholar
Garland, C.W. & Schumaker, N.E. (1967) Effect of ordering on the infra-red spectrum of ammonium chloride. 31 Phys. Chem. Solids, 28, 799–803.Google Scholar
Glaeser, R. & Fripiat, J.J. (1976) Hydratation des smectites et demixtion des cations Li, Na en fonction de la localisation des substitutions isomorphiques. Clay Miner.
11, 93–99.Google Scholar
Grauby, O. (1993) Nature et dtendue des solutions solides argiteuses, PhD thesis, Univ. Poitiers, France.Google Scholar
Greene-Kelly, R. (1953) Irreversible dehydration in montmorillonite. Part II. Clay Miner. Bull.
1, 52–56.Google Scholar
Greene-Kelly, R. (1955) Dehydration of montmorillonite minerals. Mineral. Mag.
30, 604–615.Google Scholar
Hofmann, U. & Klemen, R. (1950) Verlust der Austauschfahigkeit yon Lithiumionen an Bentonit durch Erhitzung. Z. Anorg. Allg. Chem.
262, 95–99.Google Scholar
Jackson, M.L. (1958) Soil Chemical Analysis. 3rd ed., Prentice Hall, Englwoods Cliffs, New Jersey.Google Scholar
Janek, M., Komadel, P. & Lagaly, G. (1997) Effect of autotransformation on the layer charge of smectites determined by the alkylammonium method. Clay Miner.
32, 623–632.Google Scholar
Jaynes, W.F. & Bigham, J.M. (1987) Charge reduction, octahedral charge, and lithium retention in heated, Li-saturated smectites. Clays Clay Miner.
35, 440–448.Google Scholar
Komadel, P., Bujdák, J., Madejová, J., Šucha, V. & Elsass, F. (1996) Effect of non-swelling layers on the dissolution of reduced-charge montmorillonite in hydrochloric acid. Clay Miner.
31, 333–345.Google Scholar
Lagaly, G. (1994) Layer charge determination by alkylammonium ions. Pp. 2–46 in: CMS Workshop Lectures. Vol. 6: Layer Charge Characteristics of 2:1 Silicate Clay Minerals, (Mermut, A.R., editor), The Clay Minerals Society.Google Scholar
Lagaly, G. & Weiss, A. (1969) Determination of the layer charge in mica type layer silicates. Proc. Int. Clay Conj., Tokyo, 1, 61–80.Google Scholar
Laird, D.A. (1994) Evaluation of the structural formula and alkylammonium methods of determining layer charge. Pp. 80-103 in: CMS Workshop Lectures. Vol. 6: Layer Charge Characteristics o./ 2:1 Silicate Clay Minerals, (Mermut, A.R., editor), The Clay Minerals Society.Google Scholar
Lindgreen, H. (1994) Ammonium fixation during illitesmectite diagenesis in upper Jurassic shale, North Sea. Clay Miner.
29, 527–537.Google Scholar
Madejová, J., Bujdfik, J., Gates, W.P. & Komadel, P. (1996) Preparation and infrared spectroscopic characterization of reduced-charge montmorillonite with various Li contents. Clay Miner.
31, 233–241.Google Scholar
Malla, P.B. & Douglas, L.A. (1987) Problems in identification of montmorillonite and beidellite. Clays Clay Miner.
35, 232–236.Google Scholar
Mermut, A.R. (1994) Problems associated with layer charge characterization of 2:1 phyllosilicates. Pp. 106-122 in: CMS Workshop Lectures. Vol. 6: Layer Charge Characteristics of 2.1 Silicate Clay Minerals, (Mermut, A.R., editor), The Clay Minerals Society.Google Scholar
Mortland, M.M. & Raman, K.V. (1968) Surface acidity of smectites in relation to hydration, exchangeable cation, and structure. Clays Clay Miner.
16, 393–398.Google Scholar
Mortland, M.M., Fripiat, J.J., Chaussidon, J. & Uytterhoeven, J. (1962) Interaction between ammonia and the expanding lattices of montmorillonite and vermiculite. J. Phys. Chem.
67, 248–258.Google Scholar
Nakamoto, K. (1963) Inf?ared Spectra of Inorganic and Coordination Compounds. 2nd ed., Wiley, New York.Google Scholar
Petit, S., Prot, T., Decarreau, A., Mosser, C. & Toledo- Groke, M.C. (1992) Crystallochemical study of a population of particles in smectites from a lateritic weathering profile. Clays Clay Miner.
40, 436–445.Google Scholar
Righi, D., Petit, S. & Bouchet, A. (1993) Characterization of hydroxy-interlayered vermiculite and illite/smecrite interstratified minerals from the weathering of chlorite in a cryorthod. Clays Clay Miner.
41, 484–495.Google Scholar
Righi, D., Petit, S. & Terribile, F. (1997) Pedogenetic formation of high charge beidellite in a vertisol of Sardinia (Italy). Clays Clay Miner.
46, 167–177.Google Scholar
Righi, D., Velde, B. & Meunier, A. (1995) Clay stability in clay-dominated soil systems.
Clay Miner. 30, 4554.Google Scholar
Russell, J.D. (1965) Infrared study of the reactions of ammonia with montmorillonite and saponite. Trans. Faraday Soc.
61, 2284–2294.Google Scholar
Ryskin, Y.I. (1974) The vibrations of protons in minerals: hydroxyl, water and ammonium. Pp. 137–181 in: The Infrared Spectra of Minerals, (Farmer, V.C., editor), Mineralogical Society, London.Google Scholar
Sherman, W.F. & Smulovitch, P.P. (1970) Pressure scanned Fermi resonance in the spectrum of NH; isolated in CsBr. J. Chem. Phys.
52, 5187–5193.Google Scholar
Slonimskaya, M.V., Besson, G., Daynyak, L.G., Tchoubar, C. & Drits, V.A. (1986) Interpretation of the IR spectra of celadonites and glauconites in the region of OH-stretching frequencies. Clay Miner. 21, 377388.Google Scholar
Srasra, E., Bergaya, F. & Fripiat, J.J. (1994) Infrared spectroscopy study of tetrahedral and octahedral substitutions in an interstratified illite-smectite clay. Clays Clay Miner.
42, 237–241.Google Scholar
Šucha, V., Elsass, F., Eberl, D.D., Kuchta, L., Madejová J., Gates, W.P. & Komadel, P. (1998) Hydrothermal synthesis of ammonium illite. Am. Miner.
83, 58–67.Google Scholar
Wagner, E.L. & Hornig, D.F. (1949) The vibrational spectra of molecules and complex ions in crystals. III. Ammonium chloride and deutero-ammonium chloride. J. Chem. Phys.
18, 296–304.Google Scholar
Wagner, E.L. & Hornig D,F. (1950) The vibrationnal spectra of molecules and complex ions in crystals. IV. Ammonium bromide and deutero-ammonium bromide. J. Chem. Phys.
18, 305–312.Google Scholar
White, W.B. (1974) Order-disorder effects. Pp. 87-110 in: The Infrared Spectra of Minerals. (Farmer, V.C., editor), Mineralogical Society, London.Google Scholar
- 37
- Cited by