Hostname: page-component-7479d7b7d-767nl Total loading time: 0 Render date: 2024-07-12T19:46:53.088Z Has data issue: false hasContentIssue false

Mineralogy and genesis of the Pugu Hill kaolin deposit, Tanzania

Published online by Cambridge University Press:  09 July 2018

B. Schwaighofer
Affiliation:
Engineering Geology Department, Vienna University of Agriculture, Gregor Mendel-Straße 33, A-1180 Vienna, Austria
H. W. Müller
Affiliation:
Engineering Geology Department, Vienna University of Agriculture, Gregor Mendel-Straße 33, A-1180 Vienna, Austria

Abstract

According to field studies of the Pugu Hill kaolin deposit and mineralogical investigations (X-ray, SEM), two main types of Miocene sandstones are distinguished: (i) clayey-silty kaolinitic sandstones with stacks of idiomorphic pseudohexagonal kaolinite crystals; (ii) massive clayey-silty kaolinitic sandstones with irregular fabric of isolated kaolinite plates. The Precambrian metamorphic rocks of the Uluguru Mountains are a probable source for the kaolinitic sediments of the Pugu Hill Formation. Decomposition products of weathering profiles on meta-anorthosites are mainly 7Å- and 10Å-halloysite and gibbsite. It is suggested that the kaolinitic sandstones were deposited in a former delta. The first sandstone type is considered to have developed in situ from weathered arkosic sandstone, and the second represents channel deposits in an old river system (probably a Miocene predecessor of the Ruvu River) with kaolin transported from a hinterland and redeposited. The variable formation and fabric of the kaolinites in the Pugu Hill Formation are due to in situ weathering of transported primary minerals (fedspar), and to transported weathered material (with secondary halloysite).

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bornhardt, W. (1900) Zur Oberflächengestaltung und Geologie Deutsch-Ostafrikas. Ergebnisse der in den Jahren 1895-1897 unternommenen Reisen: Deutsch-Ost Afrika, 7, 595 pp., Berlin (Dietrich Reimer).Google Scholar
Brindley, G.W. & Robinson, K. (1947) An X-ray study of some kaolinitic fireclays. Trans. Brit. Ceram. Soc. 46, 4962.Google Scholar
Cilek, V. (1979) The origin and development of primary and secondary kaolin deposits in Tanzania. Rozpravy Acad. 89, 62 pp.Google Scholar
Garcia, S.G. & Camanzano, M.S. (1968) Differentiation of kaolinite from chlorite by treatment with dimethylsulfoxide. Clay Miner. 7, 447450.Google Scholar
Harpum, B.J. (1970) Summary of the geology of Tanzania, Part V: Structure and geotectonics of the Precambrian. Mineral Resources Division, Tanzania, Mere. l, 58 pp.Google Scholar
Horobin, L.G. (1957) The geology of the Pugu-Maneromango area, Tanganyika. Unpubl. report (by BPSHELL) Geol. Survey Tanganyika, File No. C 1609, 48 + 16 pp.Google Scholar
Jengo, E. & Heikkila, L. (1986) Pugu kaolin, a project under development. Industrial Minerals, Jan., 4144.Google Scholar
Johns, W.D., Grim, R.E. & Bradley, W.F. (1954) Quantitative estimations of clay minerals by diffraction methods. J. Sed, Petr. 24, 242251.Google Scholar
Keller, W.O. (1976) Scan electron micrographs of kaolins collected from diverse origins. Clays Clay Miner. 24, 107117, 262264.CrossRefGoogle Scholar
Keller, W.D. (1978) Classification of kaolins exemplified by their textures in scan electron micrographs. Clays Clay Miner. 26, 120.Google Scholar
Kent, P.E., Hunt, J.A. & Johnstone, D.W. (1971) The geology and geophysics of Coastal Tanzania. Geophysical Pap, 6, Inst. Geol. Sci., London, 101 pp.Google Scholar
Lobitzer, H., Giacomini, R., Müller, H.W., Nötstaller, R. & Schwaighofer, B. (1983) Geology and Utilization of the ‘Pugu Hills’ Kaolin Deposit, Tanzania. Mitt. Ges. Geol. Bergbaustud. Osterr. 29, 140.Google Scholar
Prasad, G.I., Dixit, P.C. & Nanyaro, J.T. (1982) Preliminary study of the Wazo Hill limestone. Dar es Salaam Sci. J. 7, 117131.Google Scholar
Range, K.-J., Range, A. & Weiss, A. (1969) Fire-clay type kaolinite or fire-clay mineral? Experimental classification of kaolinite-haUoysite minerals. Proc. Int. Clay Conf. Tokyo, 1, 313.Google Scholar
Riedmüller, G. (1978) Neoformations and transformations of clay minerals in tectonic shear zones. Tschermaks Min. Petr. Mitt. 25, 219242.Google Scholar
Robertson, R.H.S., Brindley, G.W. & Mackenzie, R.C. (1954) Mineralogy of kaolin clays from Pugu, Tanganyika. Am. Miner. 39, 118138.Google Scholar
Sampson, D.N. & Wright, A.E. (1964) The geology of the Uluguru Mountains. Bull. Geol. Survey Tanzania 37, 69 p.Google Scholar
Schultz, L.G. (1964) Quantitative interpretation of mineralogical composition from X-ray and chemical data for the Pierre Shale. U.S. Geol. Surv. Prof. Paper 391C, 131.Google Scholar
Schwaighofer, B. & Müller, H.W. (1986) Verwitterung und Tonmineralgenese im Kristallin der Uluguru- Berge, Tanzania. Mitt. Ges. Geol. Bergbaustud. Osterr. 33, 207220.Google Scholar
Temple, P.H. & Rapp, A. (1972) Landslides in the Mgeta area, Western Uluguru mountains, Tanzania. Geogr. Ann. 54A, 157202.Google Scholar