Hostname: page-component-5c6d5d7d68-7tdvq Total loading time: 0 Render date: 2024-08-15T01:06:39.005Z Has data issue: false hasContentIssue false

Swelling minerals in a basalt and its weathering products from Morvern, Scotland: II. Swelling chlorite

Published online by Cambridge University Press:  09 July 2018

D. C. Bain
Affiliation:
The Macaulay Institute for Soil Research, Craigiebuckler, Aberdeen AB9 2QJ
J. D. Russell
Affiliation:
The Macaulay Institute for Soil Research, Craigiebuckler, Aberdeen AB9 2QJ

Abstract

A swelling chlorite from unweathered basalt has been characterized by XRD, IR, DTA and chemical analysis. Its 001 spacing of 14.9 Å increases to 18.0 Å on treatment with glycerol and decreases to 13.9 Å (with a broad diffraction effect at 14-10Å) after heating to 550°C. The mineral has an 060 spacing of 1.537Å consistent with a trioctahedral composition, but its OH stretching band at 3638 cm−1 does not show the expected pleochroism, suggesting an anomalous hydroxide sheet which chemical analysis shows is incomplete. Although the mineral has a CEC of ∼50 mEq/100 g, smectite is not present, but all the techniques show that the mineral has some saponitic character, indicating that it probably has a structure intermediate between swelling chlorite and saponite.

Résumé

Résumé

Une chlorite provenant d'un basalte non altéré a été caractérisée par diffraction RX, IR, ATD et analyse chimique. Sa périodicité 001 de 14.9 Å augmente à 18.0 Å par traitement au glycerol et décroït à 13.9 Å avec apparition d'une bande de diffraction élargie située vers 10 Å après chauffage à 550°C. Le minéral présente un espacement 060 de 1.537 Å en accord avec une composition trioctaédrique, mais la bande d'élongation OH à 3638 cm−1 ne présente pas le pléochroïsme attendu; ceci suggère un feuillet d'hydroxyde anormal, dont l'analyse chimique révèle l'état incomplet. Malgré une CEC d'∼ 50mEq/100 g aucune smectite n'est présente, mais toutes les techniques d'analyse rnontrent le caractère saponitique du minéral et indiquent qu'il possède probablement une structure intermédiaire entre une chlorite gonflante et une saponite.

Kurzreferat

Kurzreferat

Ein quellfähiger Chlorit aus unverwittertem Basalt wurde mittels Röntgen-diffraktometrie, IR, DTA und chemischen Analysen charakterisiert. Sein 001 Schichtabstand von 14.9 Å wächst bei Glycerinbehandlung auf 18 Å an und geht nach Erhitzung auf 550° auf 13.9 Å zurück (mit einem starken Linienverbreiterungseffekt zwischen 14 und 10 Å). In Übereinstimmung für einen trioktaedrischen Aufbau hat das Mineral einen 060 Reflex von 1.537 Å aber sein OH-Schwingungsband bei 3638 cm−1 zeigt nicht die erwartete Absorption, was auf eine anormale Hydroxidschicht hindeutet, wobei die chemische Analyse zeigt, daß diese unvollständig ist. Obwohl das Mineral eine Kationenaustauschkapazität von 50 mval/100 g besitzt, ist Smektit nicht zugegen, aber alle Methoden zeigen, daß es in etwa saponitischen Charakter hat und somit wahrscheinlich in der Struktur zwischen quellfähigem Chlorit und Saponit steht.

Resumen

Resumen

Ha sido caracterizada por DRX, IR ATD y análisis químico una clorita hinchable procedente de un basalto no alterado. Su espaciado basal de 14.9 Å aumenta a 18.0 Å por tratamiento con glicerol y disminuye a 13.9 Å con un efecto de difracción ancho a 10 Å, por calentamiento a 550°C. El mineral tiene una reflexión 060 de 1.537 Å consistente con una composición trioctaédrica, pero su banda de tensión OH a 3638 cm−1 no muestra el esperado pleocroismo, sugiriendo una capa anómala de hidróxido cuyo análisis químico es incompleto. El mineral tiene una capacidad de cambio de ∼ 50 mEq/100 gr., pero no hay ninguna esmectita presente, aunque todas las técnicas indican que tiene algún carácter saponítico. Es probable, por tanto que el mineral tenga una estructura intermedia entre la clorita hinchable y la saponita.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bain, D.C., Ritchie, P.F.S., Clark, D.R. & Duthie, D.M.L. (1980) Geochemistry and mineralogy of weathered basalt from Morvern, Scotland. Miner. Mag. 43, 865872.CrossRefGoogle Scholar
Bain, D.C. & Russell, J.D. (1980) Swelling minerals in a basalt and its weathering products from Morvern, Scotland: I. Interstratified montmorillonite-vermiculite-illite. Clay Miner. 15, 445451.Google Scholar
Brindley, G.W. (1961) Chlorite minerals. Pp. 242296 in: The X-ray Identification and Crystal Structures of Clay Minerals (Brown, G., editor). The Mineralogical Society, London.Google Scholar
Caillère, S. & Hènin, S. (1957) The chlorite and serpentine minerals, pp. 207230 in: The Differential Thermal Investigation of Clays (Mackenzie, R.C., editor). The Mineralogical Society, London.Google Scholar
Farmer, V.C. (1974) The layer silicates. Pp. 331363 in: The Infrared Spectra of Minerals (Farmer, V.C., editor). The Mineralogical Society, London.Google Scholar
Farmer, V.C., Russell, J.D. & Ahlrichs, J.L. (1968) Characterization of clay minerals by infrared spectroscopy. Trans. 9th Int. Congr. Soil Sci. 3, 101110.Google Scholar
Foster, M.D. (1962) Interpretation of the composition and a classification of chlorites. Prof. Pap. U.S. geol. Surv. 414A, 133.Google Scholar
Lippmann, F. (1954) Uber einen Keuperton von Zaisersweiher bei Maulbronn. Heildelb. Beitr. Miner. Petrogr. 4, 130134.Google Scholar
Lyon, R.J.P. (1962) Evaluation of Infrared Spectrophotometry for Compositional Analysis of Lunar and Planetary Soils. Stanford Research Institute, California.Google Scholar
Mitchell, W.A. (1954) An occurrence of saponite in vesicular lava. Clay Miner. Bull. 2, 207.Google Scholar
Oinuma, K. & Hayashi, H. (1968) Infrared spectra of clay minerals. J. Toyo Univ. Gen. Educ. (Nat. Sci.) 9, 5798.Google Scholar
Phillips, W.R. (1963) A differential thermal study of the chlorites. Miner. Mag. 33, 403414.Google Scholar
Post, J.L. & Plummer, C.C. (1972) The chlorite series of Flagstaff Hill area, California: a preliminary investigation. Clays Clay Miner. 20, 271283.Google Scholar
Ross, G.J. & Kodama, H. (1974) Experimental transformation of a chlorite into a vermiculite. Clays Clay Miner. 22,205211.CrossRefGoogle Scholar
Shirozu, H. (1980) Cation distribution, sheet thickness and O-OH space in trioctahedral chlorites-—an X-ray and infrared study. Miner.J. 10, 1434.Google Scholar
Stephen, I. & Macewan, D.M.C. (1950) Swelling chlorite. Géotechnique 2, 8283.Google Scholar
Stephen, I. & Macewan, D.M.C. (1951) Some chloritic clay minerals of unusual type. Clay Miner. Bull. 1, 157162.Google Scholar
Van der Plas, L. (1966) The Identification of Detrital Feldspars, pp. 39, 200202. Elsevier, Amsterdam.Google Scholar
Weaver, C.E. & Pollard, L.D. (1973) The Chemistry of Clay Minerals, pp. 7786. Elsevier, Amsterdam.Google Scholar
Wilson, A.D. (1960) The micro-determination of ferrous iron in silicate minerals by a volumetric and a colorimetric method. Analyst, Lond. 85, 823827.Google Scholar