Hostname: page-component-7479d7b7d-68ccn Total loading time: 0 Render date: 2024-07-12T08:21:50.992Z Has data issue: false hasContentIssue false

Synthesis and characterization of montmorillonite-type phyllosilicates in a fluoride medium

Published online by Cambridge University Press:  09 July 2018

M. Reinholdt
Affiliation:
Laboratoire de Matériaux Minéraux, UMR 7016, Ecole Nationale Supérieure de Chimie, Université de Haute Alsace, 3 rue Alfred Werner, F-68093 Mulhouse Cedex
J. Miehé-Brendlé*
Affiliation:
Laboratoire de Matériaux Minéraux, UMR 7016, Ecole Nationale Supérieure de Chimie, Université de Haute Alsace, 3 rue Alfred Werner, F-68093 Mulhouse Cedex
L. Delmotte
Affiliation:
Laboratoire de Matériaux Minéraux, UMR 7016, Ecole Nationale Supérieure de Chimie, Université de Haute Alsace, 3 rue Alfred Werner, F-68093 Mulhouse Cedex
R. Le Dred
Affiliation:
Laboratoire de Matériaux Minéraux, UMR 7016, Ecole Nationale Supérieure de Chimie, Université de Haute Alsace, 3 rue Alfred Werner, F-68093 Mulhouse Cedex
M.-H. Tuilier
Affiliation:
Equipe de Recherche Mécanique Matériaux et Procédés de Fabrication, Université de Haute Alsace, 61 rue Albert Camus, F-68093 Mulhouse Cedex, France
*

Abstract

The fluorine route is thoroughly investigated for the hydrothermal synthesis of montmorillonite in the Na2O-MgO-Al2O3-SiO2-H2O system. Using the optimal conditions suggested by Reinholdt et al. (2001) for the crystallization of pure montmorillonites with the formula Na2x(Al2(1-x)Mg2x☐)Si4O10(OH)2, several parameters (x, Mg content, duration of crystallization, F/Si atomic ratio, pH, nature of counterbalance cation) are varied independently from their ideal values. The products are analysed by various techniques (X-ray diffraction, thermogravimetric analysis-differential thermal analysis, 29Si, 27Al and 19F magic angle spinning-nuclear magnetic resonance). It appears that a pure montmorillonite can only be obtained within a narrow x range (0.10 ≤ x ≤ 0.20). The presence of F in the starting hydrogel and the crystallization time also have significant effects on the purity of the final products. It is shown that a small amount of fluorine is needed for the crystallization of pure montmorillonite phyllosilicates.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alba, M.D., Alvero, R., Becerro, A.I., Castro, M.A. & Trillo, J.M. (1998) Chemical behavior of lithium ions in reexpanded Li-montmorillonites. Journal of Physical Chemistry B, 102, 22072213.CrossRefGoogle Scholar
Caillere, S., Hénin, S. & Rautureau, M. (1982a) Minéralogie des argiles. Tome 1: Structure et Proprietes Physico-chimiques. Masson, France, pp. 14-37.Google Scholar
Caillère, S., Hénin, S. & Rautureau, M. (1982b) Mineralogie des argiles, Tome 2: Classification et Nomenclature. Masson, France, pp. 19–27, 79–85.Google Scholar
Cuadros, J., Delgado, A., Cardenete, A., Reyes, E. & Linares, J. (1994) Kaolinite/montmorillonite resembles beidellite. Clays and Clay Minerals, 42, 643651.CrossRefGoogle Scholar
Drachman, S.R., Roch, G.E. & Smith, M.E. (1997) Solid state NMR characterization of the thermal transformation of Fuller's Earth. Solid State Nuclear Magnetic Resonance, 9, 257–267.Google Scholar
Engelhardt, G. & Michel, D. (1987) High Resolution Solid-state NMR of Silicates and Zeolites. John Wiley & Sons, New York, USA.Google Scholar
Frost, R.L., Ruan, H., Kloprogge, J.T. & Gates, W.P. (2000) Dehydration and dehydroxylation of nontronites and ferruginous smectite. Thermochimica Ada, 346, 6372.Google Scholar
Garcia-Rodriguez, A., Del Rey-Bueno, F., Del Rey- Perez-Caballero, F.J., Urena-Amate, M.D. & Mata-Arjona, A. (1995) Synthesis and characterization of montmorillonite-(Ce or Zr) phosphate crosslinked compounds. Material Chemistry Physics, 39, 269277.Google Scholar
Gates, W.P., Stucki, J.W. & Kirkpatrick, R.J. (1996) Structural properties of reduced Upton montmorillonite. Physics and Chemistry of Minerals, 23, 535541.Google Scholar
Gates, W.P., Komadel, P., Madejová, J., Bujdak, J., Stucki, J.W. & Kirkpatrick, R.J. (2000) Electronic and structural properties of reduced-charge montmorillonites. Applied Clay Sciences, 16, 257271.Google Scholar
Goodyear, J. & Duffin, W.J. (1961) An X-ray examination of an exceptionally well crystallized kaolinite. Mineralogical Magazine, 32, 902907.Google Scholar
Harder, H. (1972) The role of magnesium in the formation of smectite minerals. Chemical Geology, 10, 3139.Google Scholar
Harward, M.E. & Brindley, G.W. (1965) Swelling properties of synthetic smectites in relation to lattice substitutions. Clays and Clay Minerals, 13, 209222.Google Scholar
Janes, N. & Oldfield, E. (1985) Prediction of Silicon-29 Nuclear Magnetic Resonance chemical shifts using a group electronegativity approach: applications to silicate and aluminosilicate structures. Journal of the American Chemical Society, 107, 67696775.Google Scholar
Karšulin, M. & Stubičan, V.I. (1954) The structure and properties of synthetic montmorillonite I. The exchange capacity and thermal behavior of synthetic magnesium and sodium montmorillonite. Monatshefte für Chemie, 85, 343358.CrossRefGoogle Scholar
Kloprogge, J.T., Komarneni, S. & Amonette, J.E. (1999) Synthesis of smectite clay minerals: a critical review. Clays and Clay Minerals, 47, 529554.Google Scholar
Labouriau, A., Kim, Y.-W., Chipera, S., Bish, D.L. & Earl, W.L. (1995) A 19F nuclear magnetic resonance study of natural clays. Clays and Clay Minerals, 43, 697704.CrossRefGoogle Scholar
Levinson, A.A. & Vian, R.W. (1966) The hydrothermal synthesis of montmorillonite group minerals from kaolinite, quartz and various carbonates. American Mineralogist, 51, 495498.Google Scholar
Marcuccilli-Hoffner, F. (1992) Etude des milieux de synthèse fluorés de zéolithes et d'aluminophosphates microporeux. PhD thesis, Universite de Haute-Alsace, Mulhouse, France.Google Scholar
Massiot, D., Favon, F., Capron, M., King, I., Le Calvé, S., Alonso, B., Durand, J.-O., Bujoli, B., Gan, Z. & Hoatson, G. (2002) Modelling one and two-dimensional solid state NMR spectra. Magnetic Resonance Chemistry, 40, 7076.Google Scholar
Mazzi, F. & Galli, E. (1978) Is each analcime different? American Mineralogist, 63, 448–460.Google Scholar
Nagase, T., Iwasaki, T., Ebina, T., Hayashi, H., Onodera, Y. & Chandra Dutta, N. (1999) Hydrothermal synthesis of Fe-montmorillonite in Si-Fe-Mg system. Chemistry Letters, 4, 303304.Google Scholar
Nakazawa, H., Yamada, H., Yoshioka, K., Adachi, M. & Fujita, T. (1991) Montmorillonite crystallization from glass. Clay Science, 8, 5968.Google Scholar
Otsubo, Y. & Kato, C. (1954) Hydrothermal synthesis of montmorillonite-type silicates III. Journal of the Chemical Society of Japan, 75, 456459.Google Scholar
Reinholdt, M. (2001) Synthèse en milieu fluoré et caracterisation de phyllosilicates de type montmorillonite. Etude structurale par spectroscopies d'Absorption des Rayons X et de Resonance Magnétique Nucléaire. PhD thesis, Universite de Haute Alsace, Mulhouse, France.Google Scholar
Reinholdt, M., Miehé-Brendlé, J., Delmotte, L., Tuilier, M.-H., Le Dred, R., Cortès, R. & Flank, A.-M. (2001) Fluorine route synthesis of montmorillonites containing Mg or Zn and characterization by XRD, thermal analysis, MAS-NMR and EXAFS spectroscopy. European Journal of Inoganic Chemistry, 11, 28312841.Google Scholar
Santaren, J., Sanz, J. & Ruiz-Hitzky, E. (1990) Structural fluorine in sepiolite. Clays and Clay Minerals, 38, 6338.Google Scholar
Sanz, J. & Robert, J.-L. (1992) Influence of structural factors on 29Si and 27Al NMR chemical shifts of phyllosilicates 2:1. Physics and Chemistry of Minerals, 19, 3945.Google Scholar
Sanz, J. & Serratosa, J.M. (1984) 29Si and 27Al highresolution MAS-NMR spectra of phyllosilicates. Journal of the American Chemical Society, 106, 47904793.Google Scholar
Stubičan, V. (1959) Clay mineral research at the institute for silicate chemistry, Zagreb. Clays and Clay Minerals, 7, 295302.Google Scholar
Watanabe, T. & Sato, T. (1988) Expansion characteristics of montmorillonite and saponite under various relative humidity conditions. Clay Science, 7, 129–138.Google Scholar
Weiss, C.A. Jr, Altaner, S.P. & Kirkpatrick, R.J. (1987) High spectroscopy of 2:1 layer silicates: correlations among chemical shift, structural distortions and chemical variations. American Mineralogist, 74, 203215.Google Scholar
Yamada, H., Nakazawa, H., Hashizume, H., Shimomura, S. & Watanabe, T. (1994) Hydration behavior of Nasmectite crystals synthesized at high pressure and high temperature. Clays and Clay Minerals, 42, 7780.Google Scholar