Hostname: page-component-5c6d5d7d68-wpx84 Total loading time: 0 Render date: 2024-08-07T22:09:59.241Z Has data issue: false hasContentIssue false

Variations in the chemistry of smectites from the Calatayud Basin (NE Spain)

Published online by Cambridge University Press:  09 July 2018

M. J. Mayayo
Affiliation:
Departamento de Ciencias de la Tierra, Area de Cristalografía y Mineralogía, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
B. Bauluz
Affiliation:
Departamento de Ciencias de la Tierra, Area de Cristalografía y Mineralogía, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
J. M. Gonzalez Lopez
Affiliation:
Departamento de Ciencias de la Tierra, Area de Cristalografía y Mineralogía, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain

Abstract

Smectites of sedimentary series from a playa lake system from Calatayud Basin have been studied by XRD and TEM chemical microanalyses. Clay particle microanalyses show complete continuity between dioctahedral aluminous and trioctahedral magnesian smectites. Aluminous smectites have been classified as montmorillonites and ferribeidellites, both with compositional variability. They represent detrital phases resulting from weathering in the source area. Compositionally-intermediate smectites (beidellite-saponite and montmorillonite-stevensite) seem to correspond to weighted mean compositions of di- and trioctahedral phases stacked together in the same particle. They represent intermediate transitional stages from detrital to authigenic smectites in more distal basin facies. Trioctahedral smectites, although called saponites and stevensites, are actually random mixed-layer kerolite-Mg-smectite with a high percentage of expandable layers. They represent authigenic clays formed from solutions with high pH and Mg content as a result of evaporative concentration. The variability in composition of smectites, both within the same sample and amongst different samples, is a possible consequence of the heterogeneity in the local chemical environment, and so, equilibrium may be only reached locally in a large variety of microsystems.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brindley, G.W. & Brown, G. (1980) Crystal Structures of Clay Minerals and their X-ray Identification. Monograph 5, Mineralogical Society, London.Google Scholar
Caillère, S. & Hénin, S. (1962) Vues d'ensemble sur le probleme de la synthese des mineraux argileus a basse temperature. Collogue N° 105 du CNRS, 32-41.Google Scholar
Christidis, G. & Dunham, A.C. (1997) Compositional variations in smectites. Part II: alteration of acidic precursor, a case study from Milos island, Greece. Clay Miner. 32, 253–270.Google Scholar
Duplay, J. (1984) Analyses chimiques ponctuelles de particules d'argilles. Relation entre variations de compositions dans une population de particules et température de formation. Sci. Géol. Bull. 37, 307–317.Google Scholar
Eberl, D.D., Jones, B.F. & Khoury, H.N. (1982) Mixed layer kerolite/stevensite from the Amargosa Desert, Nevada. Clays Clay Miner. 30, 321–326.Google Scholar
Foster, M. (1960) Interpretation of the composition of trioctahedral micas. U.S. Geol Surv. Prof. Pap. 354- B, 11-50.Google Scholar
Galan, E. & Castillo, A. (1984) Sepiolite-Palygorskite in Spanish Tertiary basins: Genetical patterns in continental environments. Pp 87–124. in: Palygorskitesepiolite: Occurrences, Genesis and Uses (Singer, A. & Galán, E., editors.) Devel. Sedimentol. 37. Elsevier, Amsterdam.Google Scholar
Galan, E. & Ferrero, A. (1982) Palygorskite-sepiolite clays of Lebrija, southern Spain. Clays Clay Miner. 30, 191–199.CrossRefGoogle Scholar
Grauby, O., Petit, S., Decarreau, A. & Baronet, A. (1993) The beidellite-saponite series: an experimental approach. Eur. J. Miner. 5, 623–635.Google Scholar
Güven, N. (1988) Smectites. Pp. 497-559. in: Hydrous Phyllosilicates (Bailey, S.W., editor). Reviews in Mineralogy, 19, Mineralogical Society of America, Washington DC, USA.Google Scholar
Harder, H. (1978) Synthesis of iron layer silicate minerals under natural conditions. Clays Clay Miner. 26, 65–72.Google Scholar
Jones, B.F. (1986) Clay mineral diagenesis in lacustrine sediments. U.S. Geol. Surv. Bull. 1578, 291–300.Google Scholar
Jones, B.F. & Galán, E. (1988) Sepiolite and Palygorskite. Pp.631–674. in: Hydrous Phyllosilicates (Bailey, S.W., editor). Reviews in Mineralogy, 19, Mineralogical Society of America, Washington DC, USA.Google Scholar
Jones, B.F. & Weir, A.H. (1983) Clay minerals of Lake Abert, an alkaline, saline lake. Clays Clay Miner. 31, 161–172.CrossRefGoogle Scholar
Khoury, H.N., Eberl, D.D. & Jones, B.F. (1982) Origin of magnesium clays from the Amargosa Desert, Nevada. Clays Clay Miner. 30, 327–336.Google Scholar
Kodama, H., De Kimpe, C.R. & Dejou, J. (1988) Ferrian saponite in a gabbro saprolite at Mount Megantic, Quebec. Clays Clay Miner. 36, 102–110.Google Scholar
Leguey, S., Pozo, M. & Medina, J.A. (1989) Paleosuelos de sepiolita en el neogeno de la cuenca de Madrid. Estudios Geol. 45, 279–291.Google Scholar
Lim, C.H. & Jackson, M.X. (1986) Expandable phyllosilicate reactions with lithium on heating. Clays Clay Miner. 34, 346–352.Google Scholar
Lorimer, G.W. & Cliff, G. (1976) Analytical electron microscopy of minerals. Pp. 506–519. in: Electron Microscopy in Mineralogy (Wenk, H.R., editor). Springer, Berlin.Google Scholar
Martín de Vidales, J.L., Pozo, M., Alia, J.M., Garcia-Navarro, F. & Rull, F. (1991) Kerolite/stevensite mixed layers from the Madrid Basin, Central Spain. Clay Miner. 26, 329–342.Google Scholar
Mayayo, M.J., Bauluz, B., López-Galindo, A. & González-López, J.M. (1996) Mineralogy and geochemistry of the carbonates in the Calatayud Basin (Zaragoza, Spain). Chem. Geol. 130, 123–136.Google Scholar
Mayayo, M.J., Torres-Ruiz, J., González-López, J.M., López-Galindo, A. & Bauluz, B. (1998) Mineralogical and chemical characterization of the sepiolite/Mg-smectite deposit at Mara (Calatayud basin, Spain). Eur. J. Miner., 10, 367–383.CrossRefGoogle Scholar
Millot, G. (1964) Géologie des Argiles. Masson et Cie, Paris.Google Scholar
Newman, A.C.D. & Brown, G. (1987) The chemical constitution of clays. Pp. 1–128 in: Chemistry of Clays and Clay Minerals (Newman, A.C.D., editor). Monograph 6, Mineralogical Society, London.Google Scholar
Ortí, F. (1992) Diagénesis en las evaporitas continentales del Terciario peninsular iberico. III Congreso Geológico de España y VIII Congreso Latinoamericano de Geología, Salamanca. Simposios, 1, pp. 118–127.Google Scholar
Paquet, H. (1970) Evolution geochimique des mineraux argileux dans les alterations et les sols des climats mediterranees tropicaux a saisons contrastes. Bull. Serv. Carte Geol. Als. Lorraine, 30, 1–212.Google Scholar
Paquet, H., Duplay, J. & Nahon, D. (1982) Variations in the composition of phyllosilicate monoparticles in a weathering profile developed on ultrabasic rocks. Proc. Int. Clay Conf., Bologna-Pavia, 595-603.Google Scholar
Paquet, H., Duplay, J. & Valleron-Blanc, M.M. (1987) Octahedral composition of individual particles in smectite-palygorskite and smectite-sepiolite assemblages. Proc. Int. Clay Conf., Denver, 13,-11. Google Scholar
Pozo, M., Casas, J. & Martin de Vidales, J.L. (1998) Identification of paleosoils occurrences in paludine Mg-clay deposits: genetic constraints and evolution of authigenic clays (Neogene Madrid Basin, Spain). Proc. 2nd Mediterranean Clay Meeting. Aveiro. Vol. 2, 145–149.Google Scholar
Reynolds, R.C. (1980) Interstratified clay minerals. Pp. 249-303 in: Crystal Structures of Clay Minerals and their X-ray Identification. (Brindley, G.W. & Brown, G., editors). Monograph 5, Mineralogical Society, London.Google Scholar
Reynolds, R.C. (1996) NEWMOD® for Windows. The calculation of one-dimensional X-ray diffraction patterns of mixed-layered clay minerals. Reynolds, D.C. Jr., 8 Broiok Road, Hanover, New Hampshire, USA.Google Scholar
Schultz, L.G. (1969) Lithium and potassium absorption, dehydroxylation temperature and structural water content of aluminous smectites. Clays Clay Miner. 17, 115–149.Google Scholar
Tardy, Y., Duplay, J. & Fritz, B. (1987) Stability fields of smectites and illites as a function of temperature and chemical composition. Pp. 461–494 in: Geochemistry and Mineral Formation in the Earth Surface (Rodriguez-Clemente, R. & Tardy, Y., editors). CSIC-CNRS, Madrid.Google Scholar
Trauth, N. (1977) Argiles evaporitiques dans la sedimentation carbonatee continentale et epicontinentale Tertiaire. Sci. Geol. Mem. 49, 1–195.Google Scholar
Trauth, N., Paquet, H., Lucas, J. & Millot, G. (1967) Les montmorillonites des vertisols lithomorphes sont ferriferes: consequences geochimiques et sedimentologiques. C. R. Acad. Sci. Paris, 264, 1577–1579.Google Scholar
Weaver, C.E. & Pollard, L.D. (1973) The Chemistry of Clay Minerals. Devel. Sedimentol. 15, Elsevier, Amsterdam.Google Scholar