Hostname: page-component-7479d7b7d-q6k6v Total loading time: 0 Render date: 2024-07-13T02:31:01.838Z Has data issue: false hasContentIssue false

The 2M1 dioctahedral mica polytype: A crystal chemical study

Published online by Cambridge University Press:  01 January 2024

Maria Franca Brigatti*
Affiliation:
Dipartimento di Scienze della Terra, Università di Modena e Reggio Emilia, Largo S. Eufemia, 19, I-41100 Modena, Italy
Daniele Malferrari
Affiliation:
Dipartimento di Scienze della Terra, Università di Modena e Reggio Emilia, Largo S. Eufemia, 19, I-41100 Modena, Italy
Marco Poppi
Affiliation:
Dipartimento di Scienze della Terra, Università di Modena e Reggio Emilia, Largo S. Eufemia, 19, I-41100 Modena, Italy
Luciano Poppi
Affiliation:
Dipartimento di Scienze della Terra, Università di Modena e Reggio Emilia, Largo S. Eufemia, 19, I-41100 Modena, Italy
*
*E-mail address of corresponding author: brigatti@unimo.it

Abstract

The structure of dioctahedral true micas such as muscovite and celadonitic muscovite (2M1 polytype, space group C2/c) is mostly affected by variations of the octahedral Al (VIAl) content. Crystals with greater Mg, Fe substitutions (i.e. celadonitic muscovite) reduce the dimensional difference between the larger trans-oriented M1 site and smaller cis-oriented M2 octahedral site. The octahedral anionic position O4 is displaced from the center of the hexagon, defined by 031 and 032 oxygen atoms (i.e. ‘octahedral hexagon’), both on and off the (001) plane. The distance between interlayer cation A and O4 is smaller in more substituted species, thus providing different orientations of the O4−H vector, as a function of VIAl. Octahedral distances (<M2−O3> and <M2−O4> are expressed as a function of cell parameters and VIA1 content, thus allowing an approximate estimate of site dimensions. These approximations are useful when a detailed structural refinement is not available. In celadonitic muscovite, the octahedral hexagon mean edge (<O31−O32>Hex) is not significantly affected by VIA1 content. The VIA1 increase produces both a decrease in cell lateral dimensions and a distorted ‘octahedral hexagon’. The decrease in a and b is consistent with a decrease of <O31−O32>Hex, whereas the distortion of the’ octahedral hexagon’ is consistent with an increase of (<031–032>Hex), because an irregular hexagon produces a longer mean edge than a regular hexagon of equal area.

The tetrahedral mean basal edge (VI<O−O>bassal) is reduced as celadonitic substitution progresses. The tetrahedral rotation angle, α was thus found to increase from celadonite to muscovite. However, in muscovite with VIAl content between 1.8 and 2.0 atoms per formula unit (a.p.f.u.), α approaches a saturation value, thus showing a proportional increase of tetrahedral and octahedral sheet lateral dimensions. Furthermore, α variation allows a coarse approximation of the threshold VIAl content, below which celadonitic substitution may not progress.

Type
Research Article
Copyright
Copyright © Clay Minerals Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Appelo, C.A.J., (1978) Layer deformation and crystal energy of micas and related minerals. I Structural models for 1M and 2M 1 polytypes American Mineralogist 63 782792.Google Scholar
Armbruster, T. Berlepsch, P. Gnos, E. and Hetherington, C.J., (2002) Crystal chemistry and structure refinements of barian muscovites from the Berisal Complex, Simplon region, Switzerland Schweizerische Mineralogische und Petrographische Mitteilungen 82 537547.Google Scholar
Bailey, S.W. and Bailey, S.W., (1984) Crystal chemistry of the true micas Micas Washington, D.C Mineralogical Society of America 1360 10.1515/9781501508820-006.Google Scholar
Benincasa, E., (2001) Relazioni cristallochimiche di miche diottaedriche e triottaedriche di diverso ambiente genetico Italy Università di Modena e Reggio Emilia PhD thesis.Google Scholar
Benincasa, E. Brigatti, M.F. Poppi, L. and Barredo Bea, F., (2003) Crystal chemistry of dioctahedral micas from peraluminous granites: The Pedrobernardo pluton (central Spain) European Journal of Mineralogy 15 543550 10.1127/0935-1221/2003/0015-0543.Google Scholar
Bradley, W.F., (1959) Current progress in silicate structures Clays and Clay Minerals 6 1825 10.1346/CCMN.1957.0060103.CrossRefGoogle Scholar
Brigatti, M.F. Guggenheim, S., Mottana, A. Sassi, F.P. Thompson, J.B. Jr. and Guggenheim, S., (2002) Mica crystal chemistry and the influence of pressure, temperature, and solid solution on atomistic models Micas: Crystal Chemistry and Metamorphic Petrology Washington, D.C Mineralogical Society of America and The Geochemical Society 197.Google Scholar
Brigatti, M.F. Frigieri, P. and Poppi, L., (1998) Crystal chemistry of Mg-, Fe-bearing muscovites-2M 1 American Mineralogist 83 775785 10.2138/am-1998-7-809.Google Scholar
Brigatti, M.F. Galli, E. Medici, L. Poppi, L. Cibin, G. Marcelli, A. and Mottana, A., (2001) Chromium-containing muscovite: Crystal chemistry and XANES spectroscopy European Journal of Mineralogy 13 377389 10.1127/0935-1221/01/0013-0377.Google Scholar
Brigatti, M.F. Kile, D.E. and Poppi, M., (2001) Crystal structure and crystal chemistry of lithium-bearing muscovite-2M 1 The Canadian Mineralogist 39 11711180 10.2113/gscanmin.39.4.1171.Google Scholar
Brigatti, M.F. Guggenheim, S. and Poppi, M., (2003) Crystal chemistry of the 1M mica polytype: The octahedral sheet American Mineralogist 88 667675 10.2138/am-2003-0420.Google Scholar
Caprilli, E., (2003) Miche e cloriti: implicazioni cristallochimiche Italy Università di Modena e Reggio Emilia PhD thesis.Google Scholar
Catti, M. Ferraris, G. and Ivaldi, G., (1989) Thermal strain analysis in the crystal structure of muscovite at 700°C European Journal of Mineralogy 1 625632 10.1127/ejm/1/5/0625.CrossRefGoogle Scholar
Comodi, P. and Zanazzi, P.F., (1997) Pressure dependence of structural parameters of paragonite Physics and Chemistry of Minerals 24 274280 10.1007/s002690050039.Google Scholar
Cruciani, G. and Zanazzi, P.F., (1994) Cation partitioning and substitution mechanisms in 1M phlogopite: a crystal chemical study American Mineralogist 79 289301.Google Scholar
Donnay, G. Morimoto, N. Takeda, H. and Donnay, J.D.H., (1964) Trioctahedral one-layer micas: I. Crystal structure of a synthetic iron mica Acta Crystallographica 17 13691373 10.1107/S0365110X64003450.Google Scholar
Drits, V.A., (1969) Some general remarks on the structure of trioctahedral micas Proceedings of the International Clay Conference, Tokyo 1 5159.Google Scholar
Drits, V.A. and Kossovskaya, A.G., (1975) The structural and crystallochemical features of layer silicates Crystallochemistry of Minerals, and Geological Problems Novosibirsk, Russia Nauka 3551 (in Russian).Google Scholar
Drits, V.A. and Smoliar-Zviagina, B.B., (1992) Relations between unit-cell parameters and cation composition of sheet silicates I: white micas Geologica Carpathica 1 3134.Google Scholar
Ferraris, G. Ivaldi, G., Mottana, A. Sassi, F.P. Thompson, J.B. Jr. and Guggenheim, S., (2002) Structural features of micas Micas: Crystal Chemistry and Metamorphic Petrology Washington, D.C Mineralogical Society of America and The Geochemical Society 117153 10.1515/9781501509070-008.Google Scholar
Guggenheim, S. Chang, Y.H. and van Koster Groos, A.F., (1987) Muscovite dehydroxylation: High-temperature studies American Mineralogist 72 537550.Google Scholar
Güven, N., (1971) Crystal structures of 2M 1 phengite and 2M 1, muscovite Zeitschrift fur Kristallographie 134 196211.Google Scholar
Hazen, R.M. and Burnham, C.W., (1973) The crystal structures of one-layer phlogopite and annite American Mineralogist 58 889900.Google Scholar
Ivaldi, G. Ferraris, G. Curetti, N. and Compagnoni, R., (2001) Coexisting 3T and 2M 1 polytypes of phengite from Cima Pal (Val Savenca, western Alps): chemical and polytypic zoning and structural characterization European Journal of Mineralogy 13 10251034 10.1127/0935-1221/2001/0013-1025.Google Scholar
Joswig, W. (1972) De Neutronenbeugungsmessungen an einem 1M-phlogopit. Neues Jahrbuch für Mineralogie Monatshefte, 111.Google Scholar
Joswig, W. Takéuchi, Y. and Fuess, H., (1983) Neutron-diffraction study on the orientation of hydroxyl groups in margarite Zeitschrift für Kristallographie 165 295303 10.1524/zkri.1983.165.1-4.295.Google Scholar
Knurr, R.A. and Bailey, S.W., (1986) Refinement of Mn-substituted muscovite and phlogopite Clays and Clay Minerals 34 716 10.1346/CCMN.1986.0340102.Google Scholar
Lee, H.-L. and Guggenheim, S., (1981) Single crystal refinement of pyrophyllite-1Tc American Mineralogist 66 350357.Google Scholar
Lin, C.Y. and Bailey, S.W., (1984) The crystal structure of paragonite-2M 1 American Mineralogist 69 122127.Google Scholar
Mathieson, AMcL and Walker, G.F., (1954) Crystal structure of magnesium vermiculite American Mineralogist 39 231255.Google Scholar
McCauley, J.W. and Newnham, R.E., (1971) Origin and prediction of ditrigonal distortions in micas American Mineralogist 56 16261638.Google Scholar
Newnham, R.E. and Brindley, G.W., (1956) The crystal structure of dickite Acta Crystallographica 9 759764 10.1107/S0365110X56002060.Google Scholar
Pavese, A. Ferraris, G. Pischedda, V. and Fauth, F., (2001) M1-site occupancy in 3T and 2M 1 phengites by low temperature neutron powder diffraction: reality or artefact? European Journal of Mineralogy 13 10711078 10.1127/0935-1221/2001/0013-1071.Google Scholar
Pischedda, V., (2001) Ordine/disordine e proprietà termoelastiche di fengiti Italy Università di Modena e Reggio Emilia PhD thesis.Google Scholar
Radoslovich, E.W., (1961) Surface symmetry and cell dimensions of layer lattice silicates Nature 191 6768 10.1038/191067a0.Google Scholar
Radoslovich, E.W. and Norrish, K., (1962) The cell dimensions and symmetry of layer-lattice silicates. I. Some structural considerations American Mineralogist 47 599616.Google Scholar
Rule, A.C. and Bailey, S.W., (1985) Refinement of the crystal structure of phengite-2M 1 Clays and Clay Minerals 33 403409 10.1346/CCMN.1985.0330505.Google Scholar
Smoliar-Zviagina, B.B., (1993) Relationship between structural parameters and chemical composition of micas Clay Minerals 28 603624 10.1180/claymin.1993.028.4.09.Google Scholar
Takeda, H. and Morosin, B., (1975) Comparison of observed and predicted structural parameters of mica at high temperature Acta Crystallographica B31 24442452 10.1107/S0567740875007777.Google Scholar
Takéuchi, J., Sudo Volume, T. and Henmi, K., (1975) The distortion of Si(Al)-tetrahedra in sheet silicates Contributions to Clay Mineralogy 16.Google Scholar
Toraya, H., (1981) Distortions of octahedra and octahedral sheets in 1M micas and the relation to their stability Zeitschrift für Kristallographie 157 173190.Google Scholar
Weiss, Z. Rieder, M. Chmielová, M. and Krajicek, J., (1985) Geometry of the octahedral coordination in micas: a review of refined structures American Mineralogist 70 747757.Google Scholar
Weiss, Z. Rieder, M. and Chmielovà, M., (1992) Deformation of coordination polyhedra and their sheets in phyllosilicates European Journal of Mineralogy 4 665682 10.1127/ejm/4/4/0665.Google Scholar
Zanazzi, P.F. Pavese, A., Mottana, A. Sassi, F.P. Thompson, J.B. Jr. and Guggenheim, S., (2002) Behavior of micas at high pressure and high temperature Micas: Crystal Chemistry and Metamorphic Petrology Washington, D.C Mineralogical Society of America and The Geochemical Society 99116 10.1515/9781501509070-007.Google Scholar
Zvyagin, B.B., (1957) Determination of the structure of celadonite by electron diffraction Soviet Physics Crystallography 2 388394.Google Scholar