Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-22T13:36:17.390Z Has data issue: false hasContentIssue false

Absorption of Infrared Radiation by D2O and HDO Mixed with Montmorillonite

Published online by Cambridge University Press:  01 July 2024

J. Salle de Chou
Affiliation:
Department of Agronomy, Purdue University, West Lafayette, Indiana 47907
P. F. Low
Affiliation:
Department of Agronomy, Purdue University, West Lafayette, Indiana 47907
C. B. Roth
Affiliation:
Department of Agronomy, Purdue University, West Lafayette, Indiana 47907

Abstract

The frequency, v, for O-D stretching in D2O films between the superimposed layers of different micas and montmorillonites was measured at several film thicknesses and temperatures of 2° and 25°C by infrared spectroscopy. The molar absorptivity, ε, for O-D stretching in HDO films between the montmorillonite layers was also measured at different film thicknesses and 25°C. It was found that v is related to mw/mm, the mass ratio of D2O to mica or montmorillonite, by the equation v = v0 exp β/(mwmm where v0 is the O-D stretching frequency in pure D2O and ß is a constant. Since mw/mm is proportional to a, the area under the absorption peak, mw/mm can be replaced by a in this equation. It was also found that ε decreased dramatically as the thickness of the water film between the montmorillonite layers decreased. These results were interpreted to mean that the structure of the interlayer water is perturbed by the interlayer cations and/or silicate surfaces.

Резюме

Резюме

Инфракрасной спектроскопией замерялась частота v для растягивания О-D в пленках D2O между прилегающими слоями разных слюд и монтмориллонитов при нескольких толщинах пленки и температурах 2° и 25°С. Также замерялась молярная поглощаемость, ε, для растягивания О-Б в пленках НDO между слоями монтмориллонита при разных толщинах пленки и 25°С. Было найдено, что связь vc mw/mm отношением массы D2O к слюде или монтмориллониту, описывается уравнением v = v0 ехр β/( mw/mm) где v0= частота растягивания О-D в чистом D2O, а β = постоянная. Поскольку mw/mmпропорционально а, площади под пиком поглощения, вместо mw/mm в этом уравнении можно подставить а. Также было найдено, что ε резко понизилась, когда уменьшилась толщина пленки между слоями монтмориллонита. Эти результаты показывают, что структура межслойной воды искажается межслойными катионами и/или силикатными поверхностями. [N. R.]

Resümee

Resümee

Die Frequenz, v, für die O-D-Streckung in D2O-Filmen zwischen den Schichten unterschiedlicher Glimmer und Montmorillonite wurde bei verschiedenen Filmdicken und bei Temperaturen von 2° und 25°C mittels Infrarot-Spektroskopie gemessen. Die molare Absorptivität, e, für die O-D-Streckung in HDO-Filmen zwischen den Montmorillonitschichten wurde ebenfalls bei unterschiedlichen Filmdicken, bei 25°C gemessen. Es zeigte sich, daß v mit mw/mm, dem Massenverhältnis von D2O zu Glimmer oder Montmorillonit, durch die Gleichung v = v° exp ß/(m/mm) zusammenhängt, wobei v0 die O-D-Streck-ungsfrequenz in reinem D2O und ß eine Konstante ist. Da mw/mm proportional zu a ist, der Fläche unter dem Absorptionspeak, kann mw/mm in dieser Gleichung durch a ersetzt werden. Weiters zeigte sich, daß e sehr stark zurückgeht, wenn die Dicke des Wasserfilms zwischen den Montmorillonitschichten abnimmt. Diese Ergebnisse wurden dahingehend interpretiert, daß die Struktur des Zwischenschichtwassers durch die Zwischenschichtkationen und/oder durch die Silikatoberflächen gestört wird. [U.W.]

Résumé

Résumé

La fréquence, v, de retirement de films D2O entre les couches superposées de différents micas et de montmorillonites a été mesurée à plusieurs épaisseurs de films et à des températures de 2° et 25°C par spectroscopic infrarouge. L'absorptivité molaire, e, pour retirement 0-D dans les films HDO entre les couches de montmorillonite a aussi été mesurée à des épaisseurs de film différentes et à 25°C. On a trouvé que v est apparenté à mw/mm la proportion de masse de D2O au mica ou à la montmorillonite, par l’équation v = v° exp ß/(mw/mm) où v est la fréquence de retirement O-D dans D2O pur et où ß est une constante. Puisque mw/mm est proportionnel à a, la région sous le sommet d'adsorption, mw/mm peut être remplacé par a dans cette équation. On a aussi trouvé que ε a décru dramatiquement à mesure que l’épaisseur du film d'eau entre les couches de montmorillonite décroissait. On a interprété ces résultats comme signifiant que la structure de l'eau interfolaire est perturbée parles cations interfolaires et/ou par les surfaces silicées. [D.J.]

Type
Research Article
Copyright
Copyright © Clay Minerals Society 1980

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1

Journal Paper No. 7591, Purdue University Agricultural Experiment Station.

References

Anderson, D. M. and Low, P. F., (1958) The density of water adsorbed by lithium-, sodium-, and potassium-bentonite Soil Sci. Soc. Amer. Proc. 22 99103.CrossRefGoogle Scholar
Badger, R. M., (1934) A relation between internuclear distances and bond force constants J. Chem. Phys. 1 128131.CrossRefGoogle Scholar
Barclay, L. M. and Ottewill, R. H., (1970) The measurement of forces between colloidal particles Spec. Disc. Faraday Soc. 1 138147.CrossRefGoogle Scholar
Bayly, J. G. Kartha, V. B. and Stevens, W. H., (1963) The absorption spectra of liquid phase H2O, HDO and D2O from 0.7 μm to 10 μm Infrared Physics 3 211223.CrossRefGoogle Scholar
Bellamy, L. J. and Pace, R. J., (1969) The significance of i.r. frequency shifts in relation to hydrogen bond strengths Spectrochim. Acta 25A 319328.CrossRefGoogle Scholar
Colthup, N. B. Daly, L. H. and Wiberley, S. E., (1975) Introduction to Infrared and Raman Spectroscopy New York Academic Press.Google Scholar
Davidtz, J. C. and Low, P. F., (1970) Relation between crystal-lattice configuration and swelling of montmorillonites Clays & Clay Minerals 18 325332.CrossRefGoogle Scholar
Falk, M. and Ford, T. A., (1966) Infrared spectrum and structure of liquid water Can. J. Chem. 44 16991707.CrossRefGoogle Scholar
Farmer, V. C. and Russell, J. D., (1971) Interlayer complexes in layer silicates. The structure of water in lamellar ionic solutions Trans. Faraday Soc. 67 27372749.CrossRefGoogle Scholar
Fink, D. H. Rich, C. I. and Thomas, G. W., (1968) Determination of internal surface area, external water, and amount of montmorillonite in clay-water systems Soil Sci. 105 7177.CrossRefGoogle Scholar
Fripiat, J. J. Chaussidon, J. and Touillaux, R., (1960) Study of dehydration of montmorillonite and vermiculite by i.r. spectroscopy J. Phys. Chem. 64 12341241.CrossRefGoogle Scholar
Gordy, W., (1946) A relation between bond force constants, bond orders, bond lengths, and the electronegativities of the bonded atoms J. Chem. Phys. 14 305320.CrossRefGoogle Scholar
Jorgenson, P., (1968) I. R. study of water adsorbed on Wyoming bentonite Geol. F0ren. Stockholm Forh. 90 213220.CrossRefGoogle Scholar
Kamb, B., (1968) Ice polymorphism and the structure of water Structural Chemistry and Molecular Biology .Google Scholar
Leonard, R. A., (1970) Infrared analysis of partially deuter-ated water adsorbed on clay Soil Sci. Soc. Amer. Proc. 34 339343.CrossRefGoogle Scholar
Lerot, L. and Low, P. F., (1976) Effect of swelling on the infrared absorption spectrum of montmorillonite Clays & Clay Minerals 24 191199.CrossRefGoogle Scholar
Low, P. F., (1976) Viscosity of interlayer water in montmorillonite Soil Sci. Soc. Amer. J. 40 500505.CrossRefGoogle Scholar
Low, P. F., (1979) Nature and properties of water in montmorillonite-water systems Soil Sci. Soc. Amer. J. 43 651658.CrossRefGoogle Scholar
Low, P. F. and Anderson, D. M., (1958) The partial specific volume of water in bentonite suspensions Soil Sci. Soc. Amer. Proc. 11 2224.CrossRefGoogle Scholar
Low, P. F. and White, J. L., (1970) Hydrogen bonding and poly water in clay- water systems Clays & Clay Minerals 18 6366.CrossRefGoogle Scholar
Luck, W. A. P., (1973) Infrared studies of hydrogen bonding in pure liquids and solutions Water, a Comprehensive Treatise 2 235321.Google Scholar
Nakamoto, K. Margoshes, M. and Rundle, R. E., (1955) Stretching frequencies as a function of distance in hydrogen bonds J. Amer. Chem. Soc. 77 64806486.CrossRefGoogle Scholar
Norrish, K., (1954) The swelling of montmorillonite Faraday Soc. Disc. 18 120134.CrossRefGoogle Scholar
Odom, J. W. and Low, P. F., (1978) Relation between swelling, surface area and b dimension of Na-montmorillonites Clays & Clay Minerals 26 345351.CrossRefGoogle Scholar
Pimentel, G. C. and McClellan, A. L., (1960) The Hydrogen Bond .Google Scholar
Ramsay, D. A., (1952) Intensities and shapes of infrared absorption bands of substances in the liquid phase J. Amer. Chem. Soc. 74 7280.CrossRefGoogle Scholar
Ravina, I. and Low, P. F., (1972) Relation between swelling, water properties and b-dimension in montmorillonite-water systems Clays & Clay Minerals 20 109123.CrossRefGoogle Scholar
Ravina, I. and Low, P. F., (1977) Change of b-dimension with swelling of montmorillonite Clays & Clay Minerals 25 201204.CrossRefGoogle Scholar
Ruiz, H. A. and Low, P. F., (1976) Thermal expansion of interlayer water in clay systems. II. Effect of clay composition Colloid and Interface Science 3 503515.CrossRefGoogle Scholar
Russell, J. D. and Farmer, V. C., (1964) I. R. spectroscopic study of the dehydration of montmorillonite and saponite Clay Minerals Bull. 5 443464.CrossRefGoogle Scholar
Serratosa, J. M., (1960) Dehydration studies by i.r. spectroscopy Amer. Mineral. 45 11011104.Google Scholar
Swenson, C. A., (1965) Absolute infrared intensities of HDO in aqueous solution Spectrochim. Acta 21 987993.CrossRefGoogle Scholar
Szymanski, H. A., (1964) Theory and Practice of Infrared Spectroscopy New York Plenum Press.CrossRefGoogle Scholar
Tsubomura, H., (1956) Nature of the hydrogen bond. III. The measurement of the infrared absorption intensities of free and hydrogen-bonded O-H bands. Theory of the increase of the intensity due to the hydrogen bond J. Chem. Phys. 24 927931.CrossRefGoogle Scholar
Vinogradov, S. N. and Linnell, R. H., (1971) Hydrogen Bonding New York Van Nostrand Reinhold Co..Google Scholar
Wall, T. T. and Hornig, D. F., (1965) Raman intensities of HDO and structure in liquid water J. Chem. Phys. 43 20792087.CrossRefGoogle Scholar
Walrafen, G. E., (1972) Raman and infrared spectral investigations of water structure Water, a Comprehensive Treatise 1 151214.Google Scholar