Hostname: page-component-5c6d5d7d68-ckgrl Total loading time: 0 Render date: 2024-08-21T22:26:28.107Z Has data issue: false hasContentIssue false

The Adsorption of n-Aliphatic Alcohols from Dilute Aqueous Solutions on RNH3-Montmorillonites. II. Interlamellar Association of the Adsorbate

Published online by Cambridge University Press:  01 July 2024

Michel S. Stul
Affiliation:
Centrum voor Oppervlaktescheikunde en Kolloïdale Scheikunde, Katholieke Universiteit Leuven, De Croylaan 42, B-3030, Leuven, (Heverlee), Belgium
Jan B. Uytterhoeven
Affiliation:
Centrum voor Oppervlaktescheikunde en Kolloïdale Scheikunde, Katholieke Universiteit Leuven, De Croylaan 42, B-3030, Leuven, (Heverlee), Belgium
Jozef De Bock
Affiliation:
Centrum voor Oppervlaktescheikunde en Kolloïdale Scheikunde, Katholieke Universiteit Leuven, De Croylaan 42, B-3030, Leuven, (Heverlee), Belgium
Pierre L. Huyskens
Affiliation:
Laboratorium voor Fysicochemie en Stralingschemie, Katholieke Universiteit Leuven, Celestijnenlaan 200D, B-3030, Leuven, (Heverlee), Belgium

Abstract

The adsorption of butanol, hexanol, and octanol on alkylammonium montmorillonites of different chain length is similar to the distribution of alcohol between an organic solvent and water in bulk solution. Successive expansion of the clay layers starts at critical alcohol/cation ratios of 0.6 or lower which are biased mean values due to the heterogeneity of the cation density of the mineral. In the interlamellar phase autoassociation of the alcohols occurs in contrast to their behavior in aqueous solution. The intrinsic association constants (kM ~ 7) are of the same magnitude of the values found in cyclohexane. The alcohols can associate with molecules fixed on specific sites of the mineral and on free monomers. The ratio of fixed to free monomers is of the order of 10/1.

Резюме

Резюме

Скорости дегидроксилирования смектитов, насыщенных продуктами разложения Ni(фен)3SO4 от 2 до 4 раз выше, чем для глин без теплостойких прослоев. Эти результаты показы¬вают, что эти включения, разделяя слои глины, обеспечивают лучшие условия для потери воды в течение процесса дегидроксилирования.

Resümee

Resümee

Die Adsorption von Butanol, Hexanol, und Oktanol auf Alkylammonium-Montmorillonite mit unterschiedlicher Kettenlänge ist der Verteilung von Alkohol zwischen organischem Lösungsmittel und Wasser in Massenlösungen ähnlich. Aufeinanderfolgende Ausdehnung der Tonschichten beginnt bei kritischen Alkohol/Kation Verhältnissen von 0,6 oder niedriger, was allerdings wegen der Heterogenität der Kationendichte des Minerals voreingenommene, durchschnittliche Werte sind. In Kontrast zu ihrem Benehmen in wäßrigen Lösungen kommt in der interlamellaren Phase Auto-Assoziation der Alkohole vor. Die wahren Assoziationskonstanten (KM ~ 7) sind von derselbem Größe wie die Werte, die in Cyclo-hexan gefunden werden. Die Alkohole können mit molekülen assozieren, die auf spezifischen Plätzen der Mineralien und auf freien Monomeren sitzen. Das Verhältnis von festen und freien Monomeren ist 10/1.

Résumé

Résumé

L'adsorption de butanol, d'hexanol, et d'octanol sur des argiles alkylammonium de longueurs de chaînes différentes peut être comparée à la distribution d'alcool entre un solvent organique et l'eau. L'expansion successive des feuillets de l'argile commence à un rapport critique alcool/cation de 0,6 ou moindre qui sont pourtant des valeurs moyennes déformées vu l'hétérogénéité de la densité de charge du minéral. Il y a de l'auto-association des alcools dans l'espace interlamellaire en contraste avec leur comportement en solution aqueuse. Les constantes d'association intrinsèques (KM ~ 7) atteignent la même grandeur que celle trouvée dans le cyclohexane. Les alcools peuvent s'associer avec les molécules fixées sur des places spécifiques du minéral ou sur les monomères libres. Le rapport des monomères fixes au libres est de l'ordre de 10/1.

Type
Research Article
Copyright
Copyright © 1979, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1

Union Carbide Corporation, Antwerp.

References

Barrer, R. M., Papadopoulos, R., and Rees, L. V. C. (1967) Exchange of sodium in clinoptilolite by organic cations: J. Inorg. Nucl. Chem. 29, 20472063.CrossRefGoogle Scholar
Boruff, C. S. (1959) Report on fusel oil: colorimetric method for quantitative determination of fusel oil in distilled beverages: J. Assoc. Off. Agr. Chem. 42, 331336.Google Scholar
Brindley, G. W. and Ray, S. (1964) Complexes of Ca-montmorillonite with primary monohydric alcohols (clay-organic studies—VIII): Amer. Mineral. 49, 106115.Google Scholar
Brown, G. and MacEwan, D. M. C. (1949) The interpretation of X-ray diagrams of soil clays—II. Structures with random interstratification: J. Soil Sci. 1, 239253.CrossRefGoogle Scholar
Cowan, C. T. and White, D. (1962) Adsorption by organoclay complexes: Clays & Clay Minerals 9, 459467.CrossRefGoogle Scholar
Crisp, D. J. (1956) The adsorption of alcohols and phenols from non-polar solvents on to alumina: J. Colloid Sci. 11, 356376.CrossRefGoogle Scholar
Friberg, S. (1976) Lyotropic liquid crystals and the structure of biomembranes: Adv. Chem. Ser. 152, 156 pp.Google Scholar
German, W. L. and Harding, D. A. (1969) The adsorption of aliphatic alcohols by montmorillonite and kaolinite: Clay Miner. 8, 213227.CrossRefGoogle Scholar
German, W. L. and Harding, D. A. (1971) Primary aliphatic alcohol-homoionic montmorillonite interactions: Clay Miner. 9, 167175.CrossRefGoogle Scholar
Giles, C. H., D'Silva, A. P., and Easton, I. A. (1974a) A general treatment and classification of the solute adsorption isotherm. II. Experimental interpretation: J. Colloid Interface Sci. 47, 766778.CrossRefGoogle Scholar
Giles, C. H., Smith, D., and Huitson, A. (1974b) A general treatment and classification of the solute adsorption isotherm. I. Theoretical: J. Colloid Interface Sci. 47, 755765.CrossRefGoogle Scholar
Granquist, W. T. and McAtee, J. L. Jr. (1963) The gelation of hydrocarbons by montmorillonite organic complexes: J. Colloid Sci. 18, 409420.CrossRefGoogle Scholar
Hansen, R. S. and Craig, R. P. (1954) The adsorption of aliphatic alcohols and acids from aqueous solutions by non-porous carbons: J. Phys. Chem. 58, 211215.CrossRefGoogle Scholar
Hanssens, I. (1969) Associatie van normale alifatische alkoholen en hun affiniteit voor water en organische solventen: Ph.D. thesis, Katholieke Univ., Leuven, Belgium.Google Scholar
Hanssens, I., Mullens, J., Deneuter, C., and Huyskens, P. (1968) Affinités comparées des monomolécules d'alcools aliphatiques pour l'eau, le cyclohexane et le tétrachlorure de carbone: Bull. Soc. Chim. Fr. 10, 39423945.Google Scholar
Huyskens, P., Mullens, J., Gomez, A., and Tack, J. (1975) Solubility of alcohols, phenols and anilines in water: Bull. Soc. Chim. Belg. 84, 253262.CrossRefGoogle Scholar
Jordan, J. W. (1949) Organophilic bentonites. I. Swelling in organic liquids: J. Phys. Colloid Chem. 53, 294306.CrossRefGoogle Scholar
Kipling, J. J. (1965) Adsorption from Solutions of Non-Electrolytes: Academic Press, London, 328 pp.Google Scholar
Lagaly, G., Stange, H., and Weiss, A. (1972) Über quasikristalline Strukturen bei der Flockung von Montmorilloniten und die Ausbildung diffuser Ionendoppelschichten in Nitrobenzol: Kolloid Z. Z. Polym. 250, 675682.CrossRefGoogle Scholar
Lagaly, G. and Weiss, A. (1969) Determination of the layer charge in mica-type layer silicates: Proc. Int. Clay Conf. Tokyo 1, 6180.Google Scholar
Lagaly, G. and Weiss, A. (1970) Anordnung und Orientierung kationischer Tenside auf ebenen silicatoberflächen. I. Darstellung der n-Alkylammoniumderivate von glimmerartigen Schichtsilikaten: Kolloid Z. Z. Polym. 237, 266273.CrossRefGoogle Scholar
Lagaly, G. and Weiss, A. (1971) Schichteinlagerungsverbindungen als Modelle für Struktur und Strukturumwandlungen von monomolekularen und bimolekularen Schichten langkettiger Verbindungen. I. n-Alkylammonium-Schichtsilicate mit primären n-Alkanolen: Kolloid Z. Z. Polym. 248, 968978.CrossRefGoogle Scholar
Mullens, J., Hanssens, I., and Huyskens, P. (1971a) Differences in solvent-effects on the association of primary, secondary and tertiary alcohols: Bull. Soc. Chim. Belg. 79, 539550.CrossRefGoogle Scholar
Mullens, J., Hanssens, I., and Huyskens, P. (1971b) Effet de l'allongement de la chaine aliphatique sur l'autoassociation des alcools primaires, secondaires et tertiaires: J. Chim. Phys. 10, 14171422.CrossRefGoogle Scholar
Olejnik, S., Posner, A. M., and Quirk, J. P. (1974) Swelling of montmorillonite in polar organic liquids: Clays & Clay Minerals 22, 361365.CrossRefGoogle Scholar
Polder, D. and Van Santen, J. H. (1946) The effective permeability of mixtures of solids: Physica (The Hague) 12, 257271.CrossRefGoogle Scholar
Prigogine, I. and Defay, R. (1954) Chemical Thermodynamics: Longmans, London, 543 pp.Google Scholar
Radke, C. J. and Prausnitz, J. M. (1972) Adsorption of organic solutes from dilute aqueous solution on activated carbon: Ind. Eng. Chem. Fundam. 11, 445451.CrossRefGoogle Scholar
Ralston, A. W., Hoffman, E. J., Hoerr, C. W., and Selby, W. M. (1941) Studies of high molecular weight aliphatic amines and their salts. I. Behavior of the hydrochlorides of dodecylamine and octadecylamine in water: J. Amer. Chem. Soc. 63, 15981601.CrossRefGoogle Scholar
Slabaugh, W. H. and St. Clair, A. D. (1969) Heats of immersion and swelling of organo-clay complexes: J. Colloid Interface Sci. 29, 586589.CrossRefGoogle Scholar
Stul, M., Maes, A., and Uytterhoeven, J. B. (1978) The adsorption of n-aliphatic alcohols from dilute aqueous solutions on RNH3-montmorillonites. I. Distribution at infinite dilution: Clays & Clay Minerals 26, 309317.CrossRefGoogle Scholar
Stul, M. and Mortier, W. J. (1974) The heterogeneity of the charge density in montmorillonites: Clays & Clay Minerals 22, 391396.CrossRefGoogle Scholar
Tack, J. and Huyskens, P. (1974) Etude de l'autoassociation des phénols par calorimétrie et par partage entre le cyclohexane et l'eau: J. Chim. Phys. 9, 12311239.CrossRefGoogle Scholar
Weiss, A. (1963) Organic derivatives of mica-type layer silicates: Angew. Chem. Int. Ed. Engl. 2, 134144.CrossRefGoogle Scholar
Wohleber, D. A. and Manes, M. (1971) Application of the Polanyi adsorption potential theory to adsorption from solution on activated carbon. II. Adsorption of partially miscible organic liquids from water solution: J. Phys. Chem. 75, 6164.CrossRefGoogle Scholar