Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-22T12:48:32.789Z Has data issue: false hasContentIssue false

The Adsorption of Yeast RNA by Allophane

Published online by Cambridge University Press:  01 July 2024

D. H. Taylor*
Affiliation:
Department of Chemistry, University of Waikato, Hamilton, New Zealand
A. T. Wilson
Affiliation:
Department of Chemistry, University of Waikato, Hamilton, New Zealand
*
1Present address: Division of Laboratories and Research, New York State Department of Health, Albany, New York 12201.

Abstract

Phosphate in the form of organic compounds can be bound in soils containing the aluminosilicate allophane. A significant part of this phosphorus is believed to be present as nucleic acids. The interaction of yeast RNA with allophane was studied to further the understanding of the allophane/organic macro molecule interaction as well as the binding of organic phosphorus by allophanic soils. The extent of RNA adsorption on the allophane was dependent upon the pH, the charge and concentration of simple cations, the concentration of RNA, and the time of interaction. From a mixture containing 145 mg/liter RNA and 2.9 g/liter allophane in 10−2 M NaCl, the amount of RNA adsorbed increased from 6% at pH 10 to 98% at pH 3. The adsorption also increased as the concentration of added NaCl was increased from 10−4 M to 10−1 M, but only when the pH was greater than 5, i.e., above the isoelectric point of the clay. Mg2+ and Ca2+ were equally much more effective at promoting adsorption than Na+ at the same concentrations. There was no difference in the effectiveness of SO4−2, Cl, or NO3 at pH 5 or higher. The adsorption isotherm at pH 7 can be described by the Langmuir equation; the apparent adsorption maximum was 38 mg/g. Van der Waals and simple electrostatic forces appear to dominate the interaction leading to the adsorption of RNA by allophane.

Резюме

Резюме

Фосфат в форме органических соединений образуется в почвах, содержащих алюмино-силикатный аллофан. Считается, что значительная часть этого фосфора существует в виде нуклеиновых кислот. Для более глубокого понимания взаимодействия макромолекул аллофана и органики а также связывания органического фосфора аллофановыми почвами изучалось взаимодействие дрожжевой РНК с аллофаном. Степень адсорбции РНК аллофаном зависела от рН, заряда и концентрации элементарных катионов, концентрации РНК, и времени взаимодействия. В растворе 10−2 М МаС1, содержащем смесь 145 мг/литр РНК и 2.9 г/литр аллофана, количество адсорбированной РНК возросло от 6% при рН = 10 до 98% при рН = 3. Адсорбция также возрастала при увеличении концентрации КаС1 от 10−4 М до 10−1 М, но при условии, что рН был больше 5, т.е. выше изоэлектрической точки глины. Мg2+ и Са2+ обеспечивали значительно более эффективную адсорбцию, чем Иа+ при той же концентрации. Не наблюдалось различий в эффективности SO42-, Cl, или NO3 при рН = 5 или выше. Адсорбционная изотерма при рН = 7 может быть описана уравнением Лангмуира. Очевидная максимальная адсорбция достигала 38 мг/г. Силы Ван-дер-Ваальса и простые электростатические силы по-видимому доминируют во взаимодействиях, приводящих к адсорбции РНК аллофаном.

Resümee

Resümee

Organische Phosphatverbindungen können in Erden gefunden werden, die das Aluminiumsilikat Allophan enthalten. Es wird geglaubt, daß ein großer Teil dieses Phosphors als Nucleinsäuren vorkommt. Die Wechselbeziehung zwischen Hefe-RNA und Allophan wurde weiterhin untersucht, um das Verständnis der Allophan-organischen Makromolekül Wechselbeziehung sowohl wie auch die Bindung zwischen organischem Phosphor und allophanischen Erden zu fördern. Der Ausmaß der RNA Adsorption auf Allophan war von dem pH, der Ladung und Konzentration von einfachen Kationen, der Konzentration von RNA, und der Dauer der Einwirkung abhängig. Von einer Mischung, die 145 mg/Liter RNA und 2,9 g/Liter Allophan in 10−2 M NaCl enthält, nimmt der Anteil von adsorbiertem RNA von 6% bei pH 10 zu 98% bei pH 3 zu. Die Adsorption nahm auch zu, als die Konzentration des zugesetzten NaCl von 10−4 M auf 10−1 M erhöht wurde, aber nur, wenn der pH größer als 5 war, das heißt hoher als der isoelektrische Punkt des Tons. Mg2+ und Ca2+ waren beide mehr effektiv in der Förderung der Adsorption als Na+ bei gleichen Konzentrationen. Es gab keinen Unterschied in der Wirkungsweise von SO42-, Cl, oder NO3 bei pH 5 oder höher. Die Adsorptionsisotherme bei pH 7 kann durch die Langmuirgleichung erklärt werden; das scheinbare Adsorptionsmaximum war 38 mg/g. Van der Waalsche- und einfache elektrostatische Kräfte scheinen die Wechselwirkungen, die zur Adsorption von RNA durch Allophan führt, zu dominieren.

Résumé

Résumé

Le phosphate sous la forme de composés organiques peut être lié dans des sols contenant l'aluminosilicate allophane. On pense qu'une part significative de ce phosphore est présent en tant qu'acides nucléiques. L'interaction de la levure RNA avec l'allophane a été étudiée pour mieux comprendre l'interaction de la macromolécule allophane/organique aussi bien que la liaison du phosphore organique par des sols allophaniques. L’étendue de l'adsorption RNA sur l'allophane dépendait du pH, de la charge et de la concentration de cations simples, de la concentration de RNA, et de la durée d'interaction. D'un mélange contenant 145 mg/litre de RNA et 2,9 g/litre d'allophane dans 10−2 M NaCl, la quantité de RNA adsorbée a augmenté de 6% à un pH de 10 à 98% à une pH de 3. L'adsorption a aussi augmenté lorsque la concentration de NaCl ajouté était augmentée de 10−4 M à 10−1 M, mais seulement quand le pH était plus élevé que 5, au-delà du point isoélectrique de l'argile. Mg2+ et Ca2+ étaient également beaucoup plus efficients à promouvoir l'adsorption que Na+ aux mêmes concentrations. Il n'y avait pas de différence dans les effets de SO42−, Cl, ou NO3 à un pH de 5 ou plus élevé. L'isotherme d'adsorption à un pH de 7 peut être décrit par l’équation Langmuir, le maximum d'adsorp-tion apparent était 38 mg/g. De simples forces électrostatiques et de Van der Waals semblent dominer l'interaction conduisant à l'adsorption de RNA par l'allophane.

Type
Research Article
Copyright
Copyright © 1979, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aomine, S. and Kobayashi, Y. (1964) Effects of allophane on the enzymic activity of a protease: Soil Sci. Plant Nutr. (Tokyo) 10, 2832.CrossRefGoogle Scholar
Aomine, S. and Kobayashi, Y. (1966) Effects of allophanic clays on the enzymic activity of β-amylase: Soil Sci. Plant Nutr. (Tokyo) 12, 712.CrossRefGoogle Scholar
Bacher, J. E. and Allen, F. W. (1950) Solubility and sedimentation studies on certain pentose nucleic acids: J. Biol. Chem. 186, 511516.CrossRefGoogle Scholar
Birrell, K. S. (1961) The adsorption of cations from solution by allophane in relation to their effective size: J. Soil Sci. 12, 307316.CrossRefGoogle Scholar
Black, C. A. (1968) Soil Plant Relationships: 2nd ed., Wiley, New York, 792 pp.Google Scholar
Bloomfield, V. A., Crothers, D. M., and Tinoco, I. Jr. (1974) Physical Chemistry of Nucleic Acids: Harper and Row, New York , 517 pp.Google Scholar
Bowden, J. W., Bolland, M. D. A., Posner, A. M., and Quirk, J. P. (1973) Generalized model for anion and cation adsorption at oxide surfaces: Nature (London) Phys. Sci. 245, 8183.CrossRefGoogle Scholar
Choi, J. and Aomine, S. (1974) Mechanisms of pentachlorophenol adsorption by soils: Soil Sci. Plant Nutr. (Tokyo) 20, 371379.CrossRefGoogle Scholar
Cloos, P., Leonard, A. S., Moreau, S. P., Herbillon, A., and Fripiat, J. J. (1969) Structural organization in amorphous aluminosilicates: Clays & Clay Minerals 17, 279287.CrossRefGoogle Scholar
de Villiers, S. M. and Jackson, M. L. (1967) Cation exchange capacity variations with pH in soil clays: Soil Sci. Soc. Amer. Proc. 31, 473476.CrossRefGoogle Scholar
Fey, M. V. and Le Roux, J. (1976) Electric charges on sesquioxide soil clays: Soil Sci. Soc. Amer. J. 40, 359369.CrossRefGoogle Scholar
Fieldes, M. and Claridge, G. G. C. (1975) Allophane: In Soil Components, Vol. 2, Inorganic Components, Gieseking, J. E., ed., Springer-Verlag, New York, 351393.CrossRefGoogle Scholar
Fieldes, M. and Schofield, R. K. (1960) Mechanisms of ion adsorption by inorganic soil colloids: N.Z. J. Sci. 3, 563579.Google Scholar
Flaig, Von W., Kuron, H., and Kaul, R. (1955) Über die Sorption von Nucleinstoffen an Tonkolloiden: Z. Pflanzenernaehr. Dueng. Bodenkd. 71, 141154.CrossRefGoogle Scholar
Gordon, C. N. and Kleinschmidt, A. K. (1970) Electron microscopic observation of DNA adsorbed on aluminummica: J. Colloid Interface Sci. 34, 131141.CrossRefGoogle ScholarPubMed
Goring, C. A. I. and Bartholomew, W. V. (1952) Adsorption of mononucleotides, nucleic acids and nucleoproteins by clays: Soil Sci. 74, 149164.CrossRefGoogle Scholar
Gradwell, M. and Birrell, K. S. (1954) Physical properties of certain volcanic clays: N.Z. J. Sci. Tech., Sect. B, 36, 108122.Google Scholar
Greaves, M. P. and Wilson, M. J. (1969) The adsorption of nucleic acids by montmorillonite: Soil Biol. Biochem. 1, 317323.CrossRefGoogle Scholar
Greenland, D. S. (1965) Interactions between clays and organic compounds in soils: Soils Fert. 28, 415425.Google Scholar
Harada, Y. and Wada, K. (1973) Release and uptake of protons by allophanic soils in relation to their CEC and AEC: Soil Sci: Plant Nutr. (Tokyo) 19, 7382.Google Scholar
Henmi, T. and Wada, K. (1976) Morphology and composition of allophane: Amer. Mineral. 61, 379390.Google Scholar
Horikawa, Y. (1975) Electrokinetic phenomena of aqueous suspensions of allophane and imogolite: Clay Sci. 4, 255263.Google Scholar
Huang, C. P. and Stumm, W. (1973) Specific adsorption of cations on hydrous γ-Al2O3: J. Colloid Interface Sci. 43, 409420.CrossRefGoogle Scholar
Inoue, T. and Wada, K. (1968) Adsorption of humified clover extracts by various clays: Trans. 9th Int. Congr. Soil. Sci. Adelaide 3, 289298.Google Scholar
Inoue, T. and Wada, K. (1971) Reactions between humified clover extract and imogolite as a model of humus-clay interaction: Parts I and II: Clay Sci. 4, 61–70, 7180.Google Scholar
Milestone, N. B. (1971) Allophane—Its structure and possible uses: J. N.Z. Inst. Chem. 35, 191197.Google Scholar
Swartzen-Allen, S. L. and Matejević, E. (1974) Surface and colloid chemistry of clays: Chem. Rev. 74, 385400.CrossRefGoogle Scholar
Taylor, D. H. (1977) The colloid and surface chemistry of allophane: D. Phil. Thesis, University of Waikato, Hamilton, New Zealand, 430 pp.Google Scholar
Taylor, D. H., Bellamy, A. R., and Wilson, A. T. (1979) The interaction of bacteriophage R17 and reovirus type III with allophane: Water Res. (in press).CrossRefGoogle Scholar
Upadhyay, S. N. and Chattoraj, D. K. (1968) Adsorption of nucleic acids at the alumina-water interface: Biochim. Biophys. Acta 161, 561563.CrossRefGoogle ScholarPubMed
Wada, K. and Harward, M. E. (1974) Amorphous clay constituents of soils: Adv. Agron. 26, 211254.CrossRefGoogle Scholar
Wada, K. and Inoue, T. (1967) Retention of humic substances derived from rotted clover leaves in soils containing montmorillonite and allophane: Soil Sci. Plant Nutr. (Tokyo) 13, 916.CrossRefGoogle Scholar