Hostname: page-component-77c89778f8-m42fx Total loading time: 0 Render date: 2024-07-25T05:00:34.489Z Has data issue: false hasContentIssue false

Adsorption-desorption of lead by polycarboxylate-coated bentonite

Published online by Cambridge University Press:  25 July 2024

Chuang Yu
Affiliation:
College of Civil Engineering and Architecture, Wenzhou University, Wenzhou, China College of Environmental Protection, Zhejiang Industry and Trade Vocational College, Wenzhou, China
Zhi-lei Zeng
Affiliation:
College of Civil Engineering and Architecture, Wenzhou University, Wenzhou, China
Xiaoqing Cai
Affiliation:
College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, China
Zhi-hao Chen
Affiliation:
College of Civil Engineering and Architecture, Wenzhou University, Wenzhou, China
Rao-ping Liao*
Affiliation:
College of Civil Engineering and Architecture, Wenzhou University, Wenzhou, China
*
Corresponding author: Rao-ping Liao; Email: lrp.liao@outlook.com

Abstract

To develop more economical and efficient heavy metal adsorbents, natural bentonite was employed as a raw material, and triethoxyvinylsilane served as a grafting agent to achieve the grafting bonding of sodium polyacrylate and bentonite. Structural alterations in the modified bentonite were analyzed through thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and X-ray diffraction (XRD). The adsorption and desorption characteristics of SAPAS-Bentonite and raw bentonite were compared and tested under various conditions, including time, temperature, pH, and lead ion concentration. The adsorption and desorption properties of sodium polyacrylate-grafted bentonite (SAPAS-Bentonite) were compared under various conditions (time, temperature, pH, and lead ion concentration). The results revealed that the modified method successfully achieved nano-scale coating of bentonite particles with sodium polyacrylate, leading to an increase in the maximum adsorption capacity of lead ions by 47.5%, reaching 165.73 mg g. A greater adsorption affinity for lead ions was exhibited by the outer sodium polycarboxylate portion of SAPAS-Bentonite compared with the inner bentonite. The adsorption of internal bentonite was limited by blocking when the adsorption of sodium polyacrylate did not reach the upper limit. The adsorption isotherm shifted from the Langmuir monolayer characteristic of the original bentonite to the S-shaped isotherm, reflecting the sodium polycarboxylate properties of SAPAS-Bentonite. Both bentonites demonstrated strong retention capacity for lead, with SAPAS-Bentonite surpassing raw bentonite in performance. This study provides valuable insights into the potential of SAPAS-Bentonite in the treatment of heavy metal pollution.

Type
Original Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdullah, N., Yusof, N., Lau, W. J., Jaafar, J., & Ismail, A. F. (2019). Recent trends of heavy metal removal from water/wastewater by membrane technologies. Journal of Industrial and Engineering Chemistry, 76, 1738. https://doi.org/10.1016/j.jiec.2019.03.029CrossRefGoogle Scholar
Atteia, O., Del Campo Estrada, E., & Bertin, H. (2013). Soil flushing: a review of the origin of efficiency variability. Reviews in Environmental Science and Bio/Technology, 12, 379389. https://doi.org/10.1007/s11157-013-9316-0CrossRefGoogle Scholar
Aytas, S., Yurtlu, M., & Donat, R. (2009). Adsorption characteristic of U(VI) ion onto thermally activated bentonite. Journal of Hazardous Materials, 172, 667674. https://doi.org/10.1016/j.jhazmat.2009.07.049CrossRefGoogle ScholarPubMed
Bai, J., & Zhao, X. (2020). Ecological and human health risks of heavy metals in shooting range soils: a meta assessment from China. Toxics, 8, 32. https://doi.org/10.3390/toxics8020032CrossRefGoogle ScholarPubMed
Cai, X., Yu, X., Yu, X., Wu, Z., Li, S., & Yu, C. (2019). Synthesis of illite/iron nanoparticles and their application as an adsorbent of lead ions. Environmental Science and Pollution Research, 26, 2944929459. https://doi.org/10.1007/s11356-019-06136-4CrossRefGoogle ScholarPubMed
Chai, W. S., Cheun, J. Y., Kumar, P. S., Mubashir, M., Majeed, Z., Banat, F., Ho, S.-H., & Show, P. L. (2021). A review on conventional and novel materials towards heavy metal adsorption in wastewater treatment application. Journal of Cleaner Production, 296, 126589. https://doi.org/10.1016/j.jclepro.2021.126589CrossRefGoogle Scholar
Chen, Y., Liao, R., Yu, C., & Yu, X. (2020). Sorption of Pb(II) on sodium polyacrylate modified bentonite. Advanced Powder Technology, 31, 32743286. https://doi.org/10.1016/j.apt.2020.06.011CrossRefGoogle Scholar
Chen, Y., Zhu, B., Wu, D., Wang, Q., Yang, Y., Ye, W., & Guo, J. (2012). Eu(III) adsorption using di(2-thylhexly) phosphoric acid-immobilized magnetic GMZ bentonite. Chemical Engineering Journal, 181–182, 387396. https://doi.org/10.1016/j.cej.2011.11.100CrossRefGoogle Scholar
Chen, Z., Yu, C., Dong, H., Cai, X., Liao, R., Zeng, Z., & Ye, C. (2022). Sorption–desorption characteristics and internal mechanism of lead ions on polycarboxylic ion exchange resin. Journal of Polymer Research, 29, 512. https://doi.org/10.1007/s10965-022-03360-4CrossRefGoogle Scholar
Chipasa, K. B. (2003). Accumulation and fate of selected heavy metals in a biological wastewater treatment system. Waste Management, 23, 135143. https://doi.org/10.1016/S0956-053X(02)00065-XCrossRefGoogle Scholar
Da̧browski, A., Hubicki, Z., Podkościelny, P., & Robens, E. (2004). Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method. Chemosphere, 56, 91106. https://doi.org/10.1016/j.chemosphere.2004.03.006CrossRefGoogle ScholarPubMed
Deliyanni, E. A., Kyzas, G. Z., Triantafyllidis, K. S., & Matis, K. A. (2015). Activated carbons for the removal of heavy metal ions: a systematic review of recent literature focused on lead and arsenic ions. Open Chemistry, 13, 000010151520150087. https://doi.org/10.1515/chem-2015-0087CrossRefGoogle Scholar
Díaz-Nava, M. C., Olguín, M. T., & Solache-Ríos, M. (2012). Adsorption of phenol onto surfactants modified bentonite. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 74, 6775. https://doi.org/10.1007/s10847-011-0084-6CrossRefGoogle Scholar
Donat, R., Akdogan, A., Erdem, E., & Cetisli, H. (2005). Thermodynamics of Pb2+ and Ni2+ adsorption onto natural bentonite from aqueous solutions. Journal of Colloid and Interface Science, 286, 4352. https://doi.org/10.1016/j.jcis.2005.01.045CrossRefGoogle ScholarPubMed
Du, E., Yu, S., Zuo, L., Zhang, J., Huang, X., & Wang, Y. (2011). Pb(II) sorption on molecular sieve analogues of MCM-41 synthesized from kaolinite and montmorillonite. Applied Clay Science, 51, 94101. https://doi.org/10.1016/j.clay.2010.11.009CrossRefGoogle Scholar
Ezzati, R. (2020). Derivation of pseudo-first-order, pseudo-second-order and modified pseudo-first-order rate equations from Langmuir and Freundlich isotherms for adsorption. Chemical Engineering Journal, 392, 123705. https://doi.org/10.1016/j.cej.2019.123705CrossRefGoogle Scholar
Faisal, A. A. H., Sulaymon, A. H., & Khaliefa, Q. M. (2018). A review of permeable reactive barrier as passive sustainable technology for groundwater remediation. International Journal of Environmental Science and Technology, 15, 11231138. https://doi.org/10.1007/s13762-017-1466-0CrossRefGoogle Scholar
Farrell, M., & Jones, D. L. (2009). Critical evaluation of municipal solid waste composting and potential compost markets. Bioresource Technology, 100, 43014310. https://doi.org/10.1016/j.biortech.2009.04.029CrossRefGoogle ScholarPubMed
Fazlali, F., Mahjoub, A. R., & Aghayan, H. (2019). Adsorption of toxic heavy metals on organofunctionalized acid activated exfoliated bentonite clay for wastewater treatment goals. Desalination and Water Treatment, 152, 338350. https://doi.org/10.5004/dwt.2019.23996CrossRefGoogle Scholar
Freundlich, H. (1907). Über die adsorption in lösungen. Zeitschrift für Physikalische Chemie, 57U, 385470. https://doi.org/10.1515/zpch-1907-5723CrossRefGoogle Scholar
Ghiaci, M., Kalbasi, R. J., & Abbaspour, A. (2007). Adsorption isotherms of non-ionic surfactants on Na-bentonite (Iran) and evaluation of thermodynamic parameters. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 297, 105113. https://doi.org/10.1016/j.colsurfa.2006.10.032CrossRefGoogle Scholar
Han, H., Rafiq, M. K., Zhou, T., Xu, R., Mašek, O., & Li, X. (2019). A critical review of clay-based composites with enhanced adsorption performance for metal and organic pollutants. Journal of Hazardous Materials, 369, 780796. https://doi.org/10.1016/j.jhazmat.2019.02.003CrossRefGoogle ScholarPubMed
Järup, L. (2003). Hazards of heavy metal contamination. British Medical Bulletin, 68, 167182. https://doi.org/10.1093/bmb/ldg032CrossRefGoogle ScholarPubMed
Ji, K., Kim, J., Lee, M., Park, S., Kwon, H.-J., Cheong, H.-K., Jang, J.-Y., Kim, D.-S., Yu, S., Kim, Y.-W., Lee, K.-Y., Yang, S.-O., Jhung, I. J., Yang, W.-H., Paek, D.-H., Hong, Y.-C., & Choi, K. (2013). Assessment of exposure to heavy metals and health risks among residents near abandoned metal mines in Goseong, Korea. Environmental Pollution, 178, 322328. https://doi.org/10.1016/j.envpol.2013.03.031CrossRefGoogle ScholarPubMed
Karapinar, N., & Donat, R. (2009). Adsorption behaviour of Cu2+ and Cd2+ onto natural bentonite. Desalination, 249, 123129. https://doi.org/10.1016/j.desal.2008.12.046CrossRefGoogle Scholar
Kharazi, A., Leili, M., Khazaei, M., Alikhani, M. Y., & Shokoohi, R. (2021). Human health risk assessment of heavy metals in agricultural soil and food crops in Hamadan, Iran. Journal of Food Composition and Analysis, 100, 103890. https://doi.org/10.1016/j.jfca.2021.103890CrossRefGoogle Scholar
Kotal, M., & Bhowmick, A. K. (2015). Polymer nanocomposites from modified clays: recent advances and challenges. Progress in Polymer Science, 51, 127187. https://doi.org/10.1016/j.progpolymsci.2015.10.001CrossRefGoogle Scholar
Kurniawan, T. A., Chan, G. Y. S., Lo, W.-H., & Babel, S. (2006). Physico-chemical treatment techniques for wastewater laden with heavy metals. Chemical Engineering Journal, 118, 8398. https://doi.org/10.1016/j.cej.2006.01.015CrossRefGoogle Scholar
Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society, 40, 13611403. https://doi.org/10.1021/ja02242a004CrossRefGoogle Scholar
Lee, D., & Char, K. (2002). Thermal degradation behavior of polyaniline in polyaniline/Na+-montmorillonite nanocomposites. Polymer Degradation and Stability, 75, 555560. https://doi.org/10.1016/S0141-3910(01)00259-2CrossRefGoogle Scholar
Li, S.-Q., Yu, C., Wu, Z.-X., Cai, X.-Q., & Zha, F.-S. (2020). Effect of kaolin particle size on the removal of Pb(II) from aqueous solutions by kaolin-supported nanoscale zero-valent iron. Materials Research Express, 7, 045002. https://doi.org/10.1088/2053-1591/ab83a3CrossRefGoogle Scholar
Liu, C., Wu, P., Tran, L., Zhu, N., & Dang, Z. (2018). Organo-montmorillonites for efficient and rapid water remediation: sequential and simultaneous adsorption of lead and bisphenol A. Environmental Chemistry, 15, 286. https://doi.org/10.1071/EN18057CrossRefGoogle Scholar
Malamis, S., & Katsou, E. (2013). A review on zinc and nickel adsorption on natural and modified zeolite, bentonite and vermiculite: examination of process parameters, kinetics and isotherms. Journal of Hazardous Materials, 252–253, 428461. https://doi.org/10.1016/j.jhazmat.2013.03.024CrossRefGoogle ScholarPubMed
Manohar, D. M., Noeline, B. F., & Anirudhan, T. S. (2005). Removal of vanadium(IV) from aqueous solutions by adsorption process with aluminum-pillared bentonite. Industrial & Engineering Chemistry Research, 44, 66766684. https://doi.org/10.1021/ie0490841CrossRefGoogle Scholar
Pape, P. G. (2011). Adhesion promoters: silane coupling agents. In Kutz, M. (ed), Applied Plastics Engineering Handbook (pp. 503517). William Andrew Publishing. https://doi.org/10.1016/B978-1-4377-3514-7.10029-7CrossRefGoogle Scholar
Ranđelović, M., Purenović, M., Zarubica, A., Purenović, J., Matović, B., & Momčilović, M. (2012). Synthesis of composite by application of mixed Fe, Mg (hydr)oxides coatings onto bentonite – a use for the removal of Pb(II) from water. Journal of Hazardous Materials, 199–200, 367374. https://doi.org/10.1016/j.jhazmat.2011.11.025CrossRefGoogle ScholarPubMed
Sani, H. A., Ahmad, M. B., Hussein, M. Z., Ibrahim, N. A., Musa, A., & Saleh, T. A. (2017). Nanocomposite of ZnO with montmorillonite for removal of lead and copper ions from aqueous solutions. Process Safety and Environmental Protection, 109, 97105. https://doi.org/10.1016/j.psep.2017.03.024CrossRefGoogle Scholar
Shao, J., Yu, X., Zhou, M., Cai, X., & Yu, C. (2018). Nanoscale zero-valent iron decorated on bentonite/graphene oxide for removal of copper ions from aqueous solution. Materials, 11, 945. https://doi.org/10.3390/ma11060945CrossRefGoogle ScholarPubMed
Souza, C. E. C., & Nascimento, R. S. V. (2008). Adsorption behavior of cationic polymers on bentonite. Journal of Thermal Analysis and Calorimetry, 94, 579583. https://doi.org/10.1007/s10973-007-8774-4CrossRefGoogle Scholar
Stewart, A., Schlosser, B., & Douglas, E. P. (2013). Surface modification of cured cement pastes by silane coupling agents. ACS Applied Materials & Interfaces, 5, 12181225. https://doi.org/10.1021/am301967vCrossRefGoogle ScholarPubMed
Taha, A. A., Shreadah, M. A., Ahmed, A. M., & Heiba, H. F. (2016). Multi-component adsorption of Pb(II), Cd(II), and Ni(II) onto Egyptian Na-activated bentonite; equilibrium, kinetics, thermodynamics, and application for seawater desalination. Journal of Environmental Chemical Engineering, 4, 11661180. https://doi.org/10.1016/j.jece.2016.01.025CrossRefGoogle Scholar
Tan, X., Liu, Y., Zeng, G., Wang, X., Hu, X., Gu, Y., & Yang, Z. (2015). Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere, 125, 7085. https://doi.org/10.1016/j.chemosphere.2014.12.058CrossRefGoogle ScholarPubMed
Tomul, F. (2012). Adsorption and catalytic properties of Fe/Cr-pillared bentonites. Chemical Engineering Journal, 185–186, 380390. https://doi.org/10.1016/j.cej.2012.01.094CrossRefGoogle Scholar
Uddin, M. K. (2017). A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chemical Engineering Journal, 308, 438462. https://doi.org/10.1016/j.cej.2016.09.029CrossRefGoogle Scholar
Wang, L., Wang, Y., Ma, F., Tankpa, V., Bai, S., Guo, X., & Wang, X. (2019). Mechanisms and reutilization of modified biochar used for removal of heavy metals from wastewater: a review. Science of the Total Environment, 668, 12981309. https://doi.org/10.1016/j.scitotenv.2019.03.011CrossRefGoogle ScholarPubMed
Wang, S., Dong, Y., He, M., Chen, L., & Yu, X. (2009). Characterization of GMZ bentonite and its application in the adsorption of Pb(II) from aqueous solutions. Applied Clay Science, 43, 164171. https://doi.org/10.1016/j.clay.2008.07.028CrossRefGoogle Scholar
Wang, Y., Chen, Y., Xie, H., Zhang, C., & Zhan, L. (2016). Lead adsorption and transport in loess-amended soil-bentonite cut-off wall. Engineering Geology, 215, 6980. https://doi.org/10.1016/j.enggeo.2016.11.002CrossRefGoogle Scholar
Xie, H., Chen, C., Shi, Y., Zheng, Z., Chen, Y., & Yan, H. (2023a). Adsorption behavior of PAEs on Loess–HTMAC bentonite and its effects on the performance of cut-off walls. Journal of Environmental Engineering, 149, 04023016. https://doi.org/10.1061/JOEEDU.EEENG-7193CrossRefGoogle Scholar
Xie, H., Wu, J., Yu, M., Yan, H., Masum, S., Cai, P., & Chen, Y. (2023b). Bisphenol a adsorption and transport in loess and cationic surfactant/hydrophilic polymer modified bentonite liners. Journal of Environmental Management, 336, 117604. https://doi.org/10.1016/j.jenvman.2023.117604CrossRefGoogle ScholarPubMed
Xu, D. (2008). Adsorption of Pb(II) from aqueous solution to MX-80 bentonite: effect of pH, ionic strength, foreign ions and temperature. Applied Clay Science, 41, 3746. https://doi.org/10.1016/j.clay.2007.09.004CrossRefGoogle Scholar
Xu, D.-M., Fu, R.-B., Wang, J.-X., Shi, Y.-X., & Guo, X.-P. (2021). Chemical stabilization remediation for heavy metals in contaminated soils on the latest decade: available stabilizing materials and associated evaluation methods – a critical review. Journal of Cleaner Production, 321, 128730. https://doi.org/10.1016/j.jclepro.2021.128730CrossRefGoogle Scholar
Xu, Z., Zhang, Q., Li, X., & Huang, X. (2022). A critical review on chemical analysis of heavy metal complexes in water/wastewater and the mechanism of treatment methods. Chemical Engineering Journal, 429, 131688. https://doi.org/10.1016/j.cej.2021.131688CrossRefGoogle Scholar
Yang, S., Zhao, D., Zhang, H., Lu, S., Chen, L., & Yu, X. (2010). Impact of environmental conditions on the sorption behavior of Pb(II) in Na-bentonite suspensions. Journal of Hazardous Materials, 183, 632640. https://doi.org/10.1016/j.jhazmat.2010.07.072CrossRefGoogle ScholarPubMed
Yu, C., Liao, R., Cai, X., & Yu, X. (2019a). Sodium polyacrylate modification method to improve the permeant performance of bentonite in chemical resistance. Journal of Cleaner Production, 213, 242250. https://doi.org/10.1016/j.jclepro.2018.12.179CrossRefGoogle Scholar
Yu, C., Lv, J., Zhou, M., Cai, X., Zha, F., & Yu, X. (2019b). Remediation of heavy metal Pb(II) in aqueous solution using Kaolin-supported nano iron. Materials Research Express, 6, 1150h4. https://doi.org/10.1088/2053-1591/ab525bCrossRefGoogle Scholar
Yu, C., Shao, J., Sun, W., & Yu, X. (2020). Treatment of lead contaminated water using synthesized nano-iron supported with bentonite/graphene oxide. Arabian Journal of Chemistry, 13, 34743483. https://doi.org/10.1016/j.arabjc.2018.11.019CrossRefGoogle Scholar
Yu, C., Yang, Y., Wu, Z., Jiang, J., Liao, R., & Deng, Y. (2021). Experimental study on the permeability and self-healing capacity of geosynthetic clay liners in heavy metal solutions. Geotextiles and Geomembranes, 49, 413419. https://doi.org/10.1016/j.geotexmem.2020.10.012CrossRefGoogle Scholar