Hostname: page-component-7479d7b7d-jwnkl Total loading time: 0 Render date: 2024-07-12T02:09:57.725Z Has data issue: false hasContentIssue false

Alteration of Andesite in Wet, Unstable Soils of Oregon's Western Cascades

Published online by Cambridge University Press:  02 April 2024

J. R. Glasmann*
Affiliation:
Department of Soil Science, Oregon State University, Corvallis, Oregon 97331

Abstract

Alteration products of andesite cobbles from wet soils formed in volcanic colluvial material were studied using petrographic, electron microscope, X-ray powder diffraction, and thermal techniques. Augite phenocrysts altered by congruent dissolution leaving voids which were subsequently filled with smectite. Plagioclase also altered to produce micrometer-size spheroidal aggregates of smectite. Halloysite was not observed within the altered cobbles, although it was abundant in the soil matrix. The formation of smectite in the altered cobbles was probably favored by the restrictive drainage of the microenvironment in combination with wet soil conditions.

Резюме

Резюме

Исследовались изменения продуктов андезитовых булыжников из влажных почв, формированных в вулканическом коллювиальном материале путем петрографических, электронно-микроскопических, и термических техник, а также рентгеновской порошковой диффракции. Аугитовые фенокристы изменялись путем соответствующего растворения, оставляя пустые места, которые последовательно заполнялись смектитом. Плаглиоклаз также изменялся в сфероидальные аггре-гаты смектита микрометрического размера. Галлоизит не наблюдался в измененных булыжниках, хотя выступал в большом количестве в почве. Формированию смектита в измененных булыжниках, вероятно, благоприятствовал ограниченный дренаж микросреды в сопоставлении с влажными условиями почвы. [E.C.]

Resümee

Resümee

Die Umwandlung von Andesitgrobkies aus nassen Böden, gebildet in vulkanischem, zusammengeschwemmtem Material, wurde mittels petrographischer Methoden, Elektronenmikroskopie, Röntgenpulverdiffraktometrie, und thermischen Methoden untersucht. Augiteinsprenglinge wandelten sich durch kongruente Auflösung um, wobei sie Hohlräume hintedießen, die im Anschluß daran mit Smektit gefüllt wurden. Plagioklas wurde ebenfalls umgewandelt, wobei sich millimetergroße kugelige Smektitaggregate bildeten. Halloysit wurde im umgewandelten Grobkies nicht gefunden, obwohl er in der Hauptmasse des Bodens reichlich vorhanden ist. Die Bildung von Smektit in dem umgewandelten Grobkies wurde wahrscheinlich durch eine allmähliche Auslaugung im kleinen Bereich zusammen mit den nassen Bodenverhältnissen gefördert. [U.W.]

Résumé

Résumé

On a étudié l'altération de produits de galets de sols mouillés formés dans du matériau voicanique colluvial par des techniques petrographiques, de microscope électronique, de diffraction poudrée aux rayons-X, et thermales. Des phénocrystes d'argile se sont altérés par dissolution congruente laissant des vides qui ont été subséquemment remplis par de la smectite. La plagioclase s'est aussi altérée pour produire des aggrégats de smectite spheroïdaux de taille d'un micro-mètre. L'halloysite n'a pas été observée à l'intérieur des galets altérés, quoiqu'elle était abondante dans la matrice du sol. La formation de smectite dans les galets altérés a probablement été favorisée par le drainage restrictif du micro-environement en combinaison avec des conditions de sol mouillé. [D.J.]

Type
Research Article
Copyright
Copyright © 1982, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1

Technical paper 6131, Oregon Agricultural Experiment Station, Corvallis, Oregon.

References

Askenasy, P. E., Dixon, J. B. and McKee, T. R., 1973 Spheroidal halloysite in a Guatemalan soil Soil Sci. Soc. Amer. Proc. 37 799803.CrossRefGoogle Scholar
Baldwin, E. M., 1976 Geology of Oregon .Google Scholar
Berner, R. A. and Holdren, G R Jr, 1977 Mechanism of feldspar weathering: Some observational evidence Geology 5 369372.2.0.CO;2>CrossRefGoogle Scholar
Borchardt, G. A., Dixon, J. B. and Weed, S. B., 1977 Montmorillonite and other smectite minerals: in Minerals in Soil Environments Soil Sci. Soc. Amer. Wisconsin Madison 293330.Google Scholar
Brewer, R., 1976 Fabric and Mineral Analysis of Soils Huntington, New York Robert E. Krieger Pub. Co..Google Scholar
Carstea, D. D., Harward, M. E. and Knox, E. G., 1970 Comparison of iron and aluminum hydroxy interlayers in montmorillonite and vermiculite: I. Formation Soil Sci. Soc. Amer. Proc. 34 517521.CrossRefGoogle Scholar
Dudas, M. J. and Harward, M. E., 1975 Weathering and authigenic halloysite in soil developed in Mazama ash Soil Sci. Soc. Amer. Proc. 39 561566.CrossRefGoogle Scholar
Eswaran, H., 1979 The alteration of plagioclases and augites under differing pedo-environmental conditions J. Soil Sci. 30 547555.CrossRefGoogle Scholar
Eswaran, H. and DeConinck, F., 1971 Clay mineral formations and transformations in basaltic soils in tropical environments Pedologie 21 181210.Google Scholar
Eswaran, H. and Wong Chaw, B.i.n., 1978 A study of a deep weathering profile on granite in Peninsular Malaysia: I. Physiochemical and micromorphological properties Soil Sci. Soc. Amer. J. 42 144149.CrossRefGoogle Scholar
Eswaran, H. and Wong Chaw, B.i.n., 1978 A study of a deep weathering profile on granite in Peninsular Malaysia: II. Mineralogy of the clay, silt, and sand fractions Soil Sci. Soc. Amer. J. 42 149153.CrossRefGoogle Scholar
Eswaran, H. and Wong Chaw, B.i.n., 1978 A study of a deep weathering profile on granite in Peninsular Malaysia: III. Alteration of feldspars Soil Sci. Soc. Amer. J. 42 153158.Google Scholar
Gardner, L. R., Kheoruenromne, I. and Chen, H. S., 1981 Geochemistry and mineralogy of an unusual diabase sap-rolite near Columbia, South Carolina Clays & Clay Minerals 29 184190.CrossRefGoogle Scholar
Harward, M. E., Carstea, D. D. and Sayegh, A. H., 1969 Properties of vermiculites and smectites: Expansion and collapse Clays & Clay Minerals 16 437447.CrossRefGoogle Scholar
Johnsgard, G. A. (1963) Temperature and water balance for Oregon weather stations: Oregon Agr. Exp. Sta. Spec. Rept. 150. Corvallis, Oregon, 127 pp.Google Scholar
Jones, R. C. and Uehara, G., 1973 Amorphous coatings on minerai surfaces Soil Sci. Soc. Amer. Proc. 37 792798.CrossRefGoogle Scholar
Kirkman, J. H., 1981 Morphology and structure of halloysite in New Zealand tephras Clays & Clay Minerals 29 19.CrossRefGoogle Scholar
Mackenzie, R. C., ed. (1957) The Differential Thermal Investigation of Clays: Mineralogical Society, London, 456 pp.Google Scholar
Melinier, A. and Velde, B., 1979 Weathering mineral facies in altered granites: The importance of local small-scale equilibria Mineral. Mag. 43 261268.Google Scholar
Paeth, R. C., Harward, M. E., Knox, E. G. and Dyrness, C. T., 1971 Factors affecting mass movement of four soils in the Western Cascades of Oregon Soil Sci. Soc. Amer. Proc. 35 943947.CrossRefGoogle Scholar
Parham, W. E. and Heller, L., 1969 Halloysiterich tropical weathering products of Hong Kong Proc. Int. Clay Conf, Tokyo, 1969 Jerusalem Israel Univ. Press 417430.Google Scholar
Peck, D. L., Griggs, A. B., Schlicker, H. G., Wells, F. G., and Dole, H. M. (1964) Geology of the central and northern parts of the Western Cascade Range in Oregon: U.S. Geol. Surv. Prof. Pap. 449, 56 pp.Google Scholar
Rahmani, R. A., 1973 Grain surface etching features of some heavy minerals J. Sed. Petrol. 43 882888.Google Scholar
Siefferman, G. and Milliot, G., 1969 Equatorial and tropical weathering of recent basalts from Cameroun: allophane, halloysite, metahalloysite, kaolinite, and gibbsite Proc. Int. Clay Conf., Tokyo, Japan, 1969 1 417430.Google Scholar
Siever, R. and Woodford, N., 1979 Dissolution kinetics and the weathering of mafic minerals Geochim. Cosmochim. Acta 43 717724.CrossRefGoogle Scholar
Stoops, G., Altemüller, H.-J., Bisdom, F. B. A., Delvigne, J., Dobrovolsky, V. V., Fitzpatrick, E. A., Paneque, G. and Sleeman, J., 1979 Guidelines for the description of mineral altérations in soil micromorphology Pedologie 29 121135.Google Scholar
Swanston, D. N., Swanson, F. J. and Coates, D. R., 1976 Timber harvesting, mass erosion, and steepland forest geomorphology in the Pacific Northwest Geomorphology and Engineering Stroudsburg, Pennsylvania Dowden, Hutchinson, and Ross, Inc. 199221.Google Scholar
Taskey, R. D. (1978) Relationships of clay mineralogy to landscape stability in western Oregon: Ph.D. Thesis, Oregon State University. Univ. Microfilms, Ann Arbor, Mich. (Mic. No. 7811993). (Diss. Abstr. 39: 631), 223 pp.Google Scholar
Taskey, R. D., Harward, M. E., Youngberg, C. T. and Youngberg, C. T., 1978 Relationship of clay mineralogy to landscape stability Forest Soils and Land Use, Proc. 5th North American Forest Soils Conf, Fort Collins, Colorado Colorado Colorado State University, Fort Collins 140162.Google Scholar
Theissen, A. A. and Harward, M. E., 1962 A paste method for preparation of slides for clay mineral identification by X-ray diffraction Soil Sci. Soc. Amer. Proc. 26 9091.CrossRefGoogle Scholar
Williams, H., Turner, F. J. and Gilbert, C. M., 1954 Pe-trography: An Introduction to the Study of Rocks in Thin Sections San Francisco Freeman.Google Scholar
Wilson, M. D. and Pittman, E. D., 1977 Authigenic clays in sandstones: recognition and influence on reservoir properties and paleoenvironmental analysis J. Sed. Petrol. 47 331.Google Scholar
Wilson, M. J., 1975 Chemical weathering of some primary rock-forming minerals Soil Sci. 119 349355.CrossRefGoogle Scholar
Youngberg, C. T., Harward, M. E., Simonson, G. H., Rai, D., Klingeman, P. C., Larson, D. W., Phinney, H. K. and Bell, J. R., 1971 Hills Creek Reservoir turbidity study Water Resources Research Inst. Pub. WRRI–14 3551.Google Scholar