Hostname: page-component-77c89778f8-7drxs Total loading time: 0 Render date: 2024-07-20T07:23:50.577Z Has data issue: false hasContentIssue false

An Fe-Berthierine From A Cretaceous Laterite: Part I. Characterization

Published online by Cambridge University Press:  28 February 2024

Thomas A. Toth
Affiliation:
Department of Earth and Atmospheric Sciences, Purdue University, West Lafayette, Indiana 47907
Steven J. Fritz
Affiliation:
Department of Earth and Atmospheric Sciences, Purdue University, West Lafayette, Indiana 47907

Abstract

An Fe-berthierine occurs in a buried laterite from the Late Cretaceous (Cenomanian) in southwestern Minnesota. It formed beneath a lignitic horizon in which reducing solutions percolated through a laterite comprising gibbsite, kaolinite and goethite. Morphologic differences suggest 2 separate conditions of Fe-berthierine formation. Early forms of Fe-berthierine include radial bladed or radial blocky crystallites coating pisoids, along with alteration of kaolinite at crystal boundaries. These morphologies formed in the vadose zone. Later forms precipitated under subaqueous conditions as macroscopic, pore-filling cement. The large size of the later-formed Fe-berthierines enabled microprobe characterization. This 1st reported occurrence of Mg-free berthierine has a structural formula close to an idealized Fe-berthierine: Fe2Al2SiO5(OH)4. Apart from their chemistry, the unique feature of the Minnesota Fe-berthierines is their formation in an exclusive nonmarine depositional environment. They formed in situ as part of a lateritic weathering profile developed on a broad, low relief peneplain. Physical evidence of formation under nonmarine conditions includes the presence of 1) scattered lignitic fragments; 2) concretions forming casts and molds of woody material; and 3) a nonmarine fossil (Unio sp. undet). Chemical evidence includes siderites collected from the berthierine-bearing horizon having stable isotope values indicating freshwater formation.

Type
Research Article
Copyright
Copyright © 1997, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bailey, S.W. and Bailey, S.W., 1988 Structures and compositions of other trioctahedral 1:1 phyllosilicates Hydrous phyllosilicates (exclusive of micas). Rev Mineral 19 169188 10.1515/9781501508998-011.CrossRefGoogle Scholar
Bayer, U., Young, T.P. and Taylor, W.E.G., 1989 Stratigraphic and environmental patterns of ironstone deposits Phanerozoic ironstones London Geol Soc Spec Publ 105117.Google Scholar
Bhattacharyya, D.P., 1983 Origin of berthierine in ironstones Clays Clay Miner 31 173182 10.1346/CCMN.1983.0310302.CrossRefGoogle Scholar
Bhattacharyya, D.P., Young, T.P. and Taylor, W.E.G., 1989 Concentrated and lean oolites: Examples from the Nubia Formation at Aswan, Egypt, and the significance of the oolitic types in ironstone genesis Phanerozoic Ironstones London Geol Soc Spec Publ 46 93104.Google Scholar
Bolin, E.J., 1956 Upper Cretaceous Foraminifera, Ostracoda, and Radiolaria from Minnesota J Paleo 30 278298.Google Scholar
Brindley, G.W., 1951 The crystal structure of some chamosite minerals Mineral Mag 29 502505.Google Scholar
Brindley, G.W. and Youell, R.E., 1953 Ferrous chamosite and ferric chamosite Mineral Mag 30 5770.Google Scholar
Brindley, G.W., 1982 Chemical compositions of berthierines—A review Clays Clay Miner 30 153155 10.1346/CCMN.1982.0300211.CrossRefGoogle Scholar
Curtis, C.D., 1995 Post-depositional evolution of mudstones. 1. Early days and parental influences J Geol Soc London 152 577586 10.1144/gsjgs.152.4.0577.CrossRefGoogle Scholar
Deudon, M., 1955 La chamosite orthorhombique du minerai de Sainte-Barbe, couche grise Soc Granc Miner, B 78 475480.Google Scholar
Deverin, L., 1945 Etude petrographique des mineris de fer oolithiques du dogger des Alpes suisses Beitraege zur Geologie der Schweiz, Geotech. Ser, Lf 13 115.Google Scholar
Engelhardt, W., 1942 Die Strukturen von Thuringit, Bavalit und Chamosit und ihre Steelung in der Chloritgruppe Z Krist 142159.CrossRefGoogle Scholar
Floran, R.J. and Papike, J.J., 1975 Petrology of the low-grade rocks of the Gunflint Iron-Formation, Ontario-Minnesota GSA Bull 86 11691190 10.1130/0016-7606(1975)86<1169:POTLRO>2.0.CO;2.2.0.CO;2>CrossRefGoogle Scholar
Fritz, S.J. and Popp, R.K., 1985 A single-dissolution technique for determining FeO and Fe2O3 in rock and mineral samples Am Mineral 70 961968.Google Scholar
Froelich, P.N. Klinkhammer, G.P. Bender, M.L. Luedtke, N.A. Heath, G.R. Cullen, D. and Dauphin, P., 1979 Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis Geochim Cosmochim Acta 43 10751090 10.1016/0016-7037(79)90095-4.CrossRefGoogle Scholar
Gehring, A.U., 1990 Diagenesis of ferriferous phases in the Northampton ironstone in the Cowthick quarry near Corby (England) Geol Mag 127 169176 10.1017/S0016756800013856.CrossRefGoogle Scholar
Goldich, S.S., 1938 A study in rock-weathering J Geol 46 1758 10.1086/624619.CrossRefGoogle Scholar
Halbach, P., 1970 Mineral constituents and facies development of the principal seam horizon of the Franconian Dogger beta in the area of the claim of the “Kleiner Johannes” company near Pegnitz, Upper Franconia Geol Jahrbuch 88 471507.Google Scholar
Hallam, A. and Bradshaw, M.J., 1979 Bituminous shales and oolitic ironstones as indicators of transgressions and regressions J Geol Soc London 136 157164 10.1144/gsjgs.136.2.0157.CrossRefGoogle Scholar
Harder, H., Young, T.P. and Taylor, W.E.G., 1989 Mineral genesis in ironstones: A model based upon laboratory experiments and prtrographie observations Phanerozoic ironstones London Geol Soc Spec Publ 46 918.Google Scholar
Hallimond, A.E., 1939 On the relation of chamosite and daphnite to chlorite group Mineral Mag 25 441465.Google Scholar
Hughes, C.R., Young, T.P. and Taylor, W.E.G., 1989 The application of analytical transmission electron microscopy to the study of oolitic ironstones: A preliminary study Phanerozoic ironstones London Geol Soc Spec Publ 121132.Google Scholar
Iijima, A. and Matsumoto, R., 1982 Berthierine and chamosite in coal measures of Japan Clays Clay Miner 30 264274 10.1346/CCMN.1982.0300403.CrossRefGoogle Scholar
James, H.J., 1966 Chemistry of the iron-rich sedimentary rocks US Geol Surv Prof Paper 440-W .CrossRefGoogle Scholar
Kearsley, A.T., Young, T.P. and Taylor, W.E.G., 1989 Iron-rich ooids, their mineralogy and mi-crofabric: Clues to their origin and evolution Phanerozoic ironstones London Geol Soc Spec Publ 46 141164.Google Scholar
Keith, M.L. and Weber, J.N., 1964 Isotopic composition and environmental classification of selected limestones and fossils Geochim Cosmochim Acta 28 17871816 10.1016/0016-7037(64)90022-5.CrossRefGoogle Scholar
Klekl, L.V., 1979 Regularities of chamosite distribution in bauxites of the Belgorod Distric of the Kursk magnetic anomaly Lithol Miner Resour 14 377382.Google Scholar
Kodama, H. and Foscolos, A.E., 1981 Occurrence of berthierine in Canadian Arctic desert soils Can Mineral 19 279283.Google Scholar
Lu, G. McCabe, C. Henry, D.J. and Schedi, A., 1994 Origin of hematite carrying a Late Paleozoic remagnetization in a quartz sandstone bed from the Silurina Rose Hill Formation, Virginia, USA Earth Planet Sci Lett 126 235246 10.1016/0012-821X(94)90109-0.CrossRefGoogle Scholar
Maynard, J.B., 1986 Geochemistry of oolitic iron ores, an electron microprobe study Econ Geol 81 14731483 10.2113/gsecongeo.81.6.1473.CrossRefGoogle Scholar
McLaughlin, J.R. Ryden, J.C. and Syers, J.K., 1981 Sorption of inorganic phosphate by iron- and aluminium-containing components J Soil Sci 32 365377 10.1111/j.1365-2389.1981.tb01712.x.CrossRefGoogle Scholar
Meyer, R., 1976 Continental sedimentation, soil genesis, and marine transgression in the basal beds of the Cretaceous in the east of the Paris Basin Sedimentology 23 235253 10.1111/j.1365-3091.1976.tb00048.x.CrossRefGoogle Scholar
Nikitina, A.P. Zvyagin, B.B. and Serratosa, J.M., 1972 Origin and crystal structure features of clay minerals from the lateritic bauxites in the European part of the U.S.S.R Proc Int Clay Conf Madrid. Madrid Div Ciencias, CSIC 227233.Google Scholar
Novak, F. Losert, J. Valcha, Z. and Vtelensky, J., 1957 Orthocha-mosit z rudnich zil v Kanku u Kutne Hory, novy specificky mineral Ustav Geol 315342.CrossRefGoogle Scholar
Parham, W.E.. 1970. Clay mineralogy and geology of Minnesota’s kaolin clays. MN Geol Surv Spec Publ 10. 14. p.Google Scholar
Porrenga, D.H. and Bailey, S.W., 1966 Clay minerals in recent sediments of the Niger Delta Clays Clay Miner, Proc 14th Natl Conf Berkeley, CA. New York Pergamon Pr 221233 10.1016/B978-0-08-011908-3.50021-9.CrossRefGoogle Scholar
Porrenga, D.H., 1967 Glauconoite and chamosite as depth indicators in the marine environment Mar Geol 5 495501 10.1016/0025-3227(67)90056-4.CrossRefGoogle Scholar
Protic, M., 1955 Etude mineralogique des phyllites de quelques minerais de fer Serbie (Yougoslavie) Soc Franc Miner, B 78 528534.Google Scholar
Rohrlich, V. Price, N.B. and Calvert, S.E., 1969 Chamosite in the recent sediments of Loch Etive, Scotland J Sed Petrol 39 624631.Google Scholar
Rude, P.D. and Aller, R.C., 1989 Early diagnetic alteration of lateritic particle coatings in Amazon continental shelf sediment J Sed Petrol 59 704716.Google Scholar
Schellmann, W., 1966 Secondary formation of chamosite from goethite Z Erz Metall 19 302305.Google Scholar
Setterholm, D.R., Shurr, G.W. Ludvigson, G.A. and Hammond, R.H., 1994 The Cretaceous rocks of southwestern Minnesota: Reconstructions of a marine and nonmarine transition along the eastern margin of the Western Interior Seaway Perspectives on the eastern margin of the Cretaceous Western Interior Basin Boulder, CO Geol Soc Am Spec Paper 287 97110 10.1130/SPE287-p97.CrossRefGoogle Scholar
Siehl, A. Thein, J., Young, T.P. and Taylor, W.E.G., 1989 Mintette-type ironstones Phanerozoic ironstones London Geol Soc Spec Publ 46 175193.Google Scholar
Sloan, R.E., 1964 The Cretaceous system in Minnesota MN Geol Surv Report of Investigations 5.Google Scholar
Sudo, T., 1943 On some low temperature hydrous silicates found in Japan Bull Chem Soc Jpn. 18 281329 10.1246/bcsj.18.281.CrossRefGoogle Scholar
Taylor, K.G., 1990 Berthierine from the non-marine Wealden (Early Cretaceous) sediments of southeast England Clay Miner 25 391399 10.1180/claymin.1990.025.3.13.CrossRefGoogle Scholar
Taylor, K.G. and Curtis, C.D., 1995 Stability and facies association of early diagenetic mineral assemblages: An example from a Jurassic ironstone-mudstone succession, U.K J Sed Res A65 358368 10.1306/D42680C2-2B26-11D7-8648000102C1865D.CrossRefGoogle Scholar
Thurrell, R.G., Sergeant, G.A. and Young, B.R.. 1970. Chamosite in Weald clay from Horsham, Sussex. Nat Env Res Council Rpt 70/7.Google Scholar
Toth, T.A., Hauck, S.A. and Heine, J.J., 1991 Part 1: Paleogeographical interpretation of Late Cretaceous, kaolinite-rich sediments of the Minnesota River Valley, Redwood, Renville, Brown, and Nicollet Counties, Minnesota Regional and local geologic, mineralogic, and geochemical controls of industrial clay grades in the Minnesota River Valley and the Meridian Aggregates Quarry, St. Cloud, Minnesota. Nat Resources Research Inst Technical Report NRRI/TR-91/15 193.Google Scholar
Toth, T.A., 1996 Stratigraphy, mineralogy, and geochemistry of Upper Cretaceous deposits from the Minnesota and Cottonwood River Valleys, southwestern Minnesota [Ph. D. dissertation] West Lafayette, IN Purdue Univ.Google Scholar
Van Houten, F.B. and Purucker, M.E., 1984 Glauconitic peloids and chamosite ooids, favorable factors, constraints, and problems Earth-Sci Rev 20 211243 10.1016/0012-8252(84)90002-3.CrossRefGoogle Scholar
Velde, B. Raoult, J.F. and Leikine, M., 1974 Metamorphosed berthierine pellets in Mid-Cretaceous rocks from north-eastern Algeria J Sed Petrol 44 12751280.Google Scholar
Velde, B., Young, T.P. and Taylor, W.E.G., 1989 Phyllosilicate formation in berthierine peloids and iron oolites Phanerozoic ironstones London Geol Soc Spec Publ 46 38.Google Scholar
Weber, J.N. Williams, E.G. and Keith, M.L., 1964 Paleoenvironmental significance of carbon isotopie composition of siderite nodules in some shales of Pennsylvanian age J Sed Petrol 34 814818.Google Scholar
Witzke, B.J. Ludvigson, G.A., Shurr, G.W. Ludvigson, G.A. and Hammond, R.H., 1994 The Dakota Formation in Iowa and the type area Perspectives on the Eastern Margin of the Cretaceous Western Interior Basin. GSA Spec Pap 4378 10.1130/SPE287-p43.CrossRefGoogle Scholar
Yershova, Z.P. Nikitina, A.P. Perfil’ev, Y.D. Babeshkin, A.M. and Bailey, S.W., 1976 Study of chamosites by gamma-resonance (Mos’s-bauer) spectroscopy Proc Int Clay Conf; 1975 Mexico City. Wilmette, IL Applied Publishing 211219.Google Scholar