Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-23T17:23:47.404Z Has data issue: false hasContentIssue false

Benefits and Risks of Clays and Clay Minerals to Human Health From Ancestral to Current Times: A Synoptic Overview

Published online by Cambridge University Press:  01 January 2024

Celso Gomes*
Affiliation:
GeoBioTec of FCT (Foundation for Science and Technology), University of Aveiro, 3810-193 Aveiro, Portugal
Michel Rautureau
Affiliation:
20 rue de Barbezieux, 17340 Châtelaillon Plage, France
Julia Poustis
Affiliation:
12 Boulevard Daviers, 49000 Angers, France
Jorge Gomes
Affiliation:
GeoBioTec of FCT (Foundation for Science and Technology), University of Aveiro, 3810-193 Aveiro, Portugal
*
*E-mail address of corresponding author: cgomes@ua.pt

Abstract

Clay, or more precisely, certain clay typologies, have been used traditionally by humans for therapeutic, nutritional, and skin-care purposes though they may be responsible for some relatively rare but significant health and skin-care risks. For example, clay particles could adsorb and make available for elimination or excretion any potential toxic elements or toxins being ingested or produced, but they could also adsorb and make available for incorporation, through ingestion or through dermal absorption, toxic elements, e.g. heavy metals. Geophagy has been observed in all parts of the world since Antiquity, reflecting cultural practices, religious beliefs, and physiological needs, be they nutritional (dietary supplementation) or as a remedy for disease. Some clays and clay minerals are employed widely in both the pharmaceutical and cosmetics industries as active compounds/agents and as excipients. In the biomedical field, some clay minerals such as halloysite and montmorillonite are known for their effective role as carriers for the control and sustainable delivery of active drug molecules, and in the biomaterials field some clay minerals are used for scaffold, hydrogel, foam, and film production. Constraints, both chemical and microbiological, on the use of clay-based products for therapeutic and cosmetic topical applications are generally imposed by sanitary regulations, and some solutions are proposed herein to control and reduce such restrictions. Particular emphasis is placed here on peloids and pelotherapy, as well as on manipulated and modified peloids, and specifically on tailored peloids or ‘designed and engineered’ peloids, and their derivatives, bactericidal peloids and ointments. As far as the so-called ‘killer clays’ are concerned, their pre-requisites, mechanisms of action, and disinfection role are also enhanced. Podoconiosis is an environment-related or geochemical disease that occurs in tropical highland areas, and is caused by long-term exposure of bare feet to volcanic, red-clay soil and affects some people, particularly those working in agriculture in some regions of Africa, Asia, and South America.

Type
Review
Copyright
Copyright © The Clay Minerals Society 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alves, T. F. L. P. (2015). Formulação de Pastas Cerâmicas a partir de Matérias-Primas Argilosas dos Concelhos de Vila Viçosa e Redondo para a Produção de Olaria Tradicional. Tese de Mestrado em Engenharia Geológica, Universidade de Évora, 251 pp.Google Scholar
Alves, T. F. L. P., Martins, R., Lopes, L., Gomes, C. S. F., Baroso, M., Santos, D., Rosado, F., & Rosado, L. (2016). Formulação de Pastas Cerâmicas a partir de Matérias-Primas Argilosas eCarbonatadas dos Concelhos de Vila Viçosa e Redondo para a Produção de Olaria Tradicional. Callipole-Revista de Cultura, 23, 207224.Google Scholar
Abrahams, P. W. (2002). Soils: Their implications to human health. The Science of the Total Environment, 291, 132.CrossRefGoogle ScholarPubMed
Abrahams, P. W. (2005). Geophagy and the Involuntary Ingestion of Soil. In Selinus, O., Alloway, B., Centeno, J. A., Finkelman, R. B., Fuge, R., Lindh, U., & Smedley, P. (Eds.), Essentials of Medical Geology (pp. 435458). Elsevier Academic Press.Google Scholar
Abrahams, P. W. (2012). Involuntary Soil Ingestion and Geophagy: A source and sink of 338 mineral nutrients and potentially harmful elements to consumers of earth 339 materials. Applied Geochemistry, 27, 954968.CrossRefGoogle Scholar
Abrahams, P.W. (2013). Geophagy and the Involuntary Ingestion of Soil. In: O. Selinus, B. Alloway, J.A. Centeno, R.B. Finkelman, R. Fuge, U. Lindh, & P. Smedley (Eds), Essentials of Medical Geology: Revised Edition,, pp 433–454, Dordrecht, The Netherlands, Springer.Google Scholar
Abu-Shakra, M., Mayer, A., Frigger, M., & Harari, M. (2014). Dead Sea mud packs for chronic low back pain. Israel Medical Association Journal, 16, 574577.Google Scholar
Ambre, A. H., Katti, K. S., & Katti, D. R. (2010). Nanoclay based composite scaffolds for bone tissue engineering applications. Journal of Nanotechnology in Engineering and Medicine, 1, 031013.CrossRefGoogle Scholar
Ambrogi, V., Nocchetti, M., & Latterini, L. (2014). Promethazinemontmorillonite inclusion complex to enhance drug photostability. Langmuir, 30, 1461214620.CrossRefGoogle ScholarPubMed
Arhin, E., & Zango, M. S. (2017). Determination of trace elements and their concentrations in clay balls: problem of geophagia practice in Ghana. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-016-9801-9CrossRefGoogle Scholar
Armijo, F. (1991). Propiedades térmicas de los peloides. Boletin Sociedad Espanola de Hidrologia Medica, 6, 151157.CrossRefGoogle Scholar
Armijo, F., Maraver, F., Pozo, M., Carretero, M. I., Armijo, O., Fernández-Toran, M. A., Fernández-González, M. V., & Corvillo, I. (2016). Thermal behaviour of clays and clay-water mixtures for pelotherapy. Applied Clay Science, 126, 5056.CrossRefGoogle Scholar
Arribas, M., Meijidem, R., & Mourelle, M. L. (2010). Evolución de la psoriasis tratada con peloides y agua mineromedicinal de LaToja. In Maraver, F. & Carretero, M. I. (Eds.), Libro de Resúmenes del II Congreso Iberoamericano de Peloides (p. 75). C.E.R.S-A.Google Scholar
Awad, M. E., López-Galindo, A., Setti, M., El-Rahmany, M. M., & Viseras, C. (2017). Kaolinite in pharmaceutics and biomedicine. International Journal of Pharmaceutics, 533, 3448.CrossRefGoogle ScholarPubMed
Awad, M. E., López-Galindo, A., Medarevic, D., Milenkovic, M., Ibric, S., El-Rahmany, M. M., & Viseras, C. (2021). Enhanced antimicrobial activity and physicochemical stability of rapid pyrofabricated silver-kaolinite nanocomposite. International Journal of Pharmaceutics, 598, 120372. https://doi.org/10.1016/j.ijpharm.2021.120372CrossRefGoogle ScholarPubMed
Babu, S. S., Kalarikkal, N., Thomas, S., & Radhakrishnam, E. K. (2018). Enhanced antimicrobial performance of cloisite 30B/poly(caprolactone) over cloisite 30B/poly (lctic acid) as evidenced by structural features. Applied Clay Science, 153, 198204.CrossRefGoogle Scholar
Baldovin, T., Amoruso, I., Caldara, F., Buja, A., Baldo, V., Cocchio, S., & Bertoncello, C. (2020). Microbiological hygiene quality of thermal muds: A pilot study in pelotherapy facilities of the Euganean Thermal District (NE Italy). International Journal of Environmental Research and Public Health, 17. https://doi.org/10.3390/ijerph17145040CrossRefGoogle Scholar
Bech, J. (1996). Aspectos históricos y técnicos de las arcillas de uso medicinal. IX Simposio del Grupo Especializado de Cristalografia, Real Sociedad Española de Fisica y Quimica, Univ. Granada.Google Scholar
Bech, J. (2010). Terra Lemnia: dades, dubtes i pelegrins, Discurso de Ingreso como Académico Numerário de la Real Académia de Medicina de Catalunya, 100 pp.Google Scholar
Bergaya, F., & Lagaly, G. (2006). General Introduction: Clays, Clay Minerals, and Clay Science. In Developments in Clay Science; Elsevier: Oxford. UK, Chapter, 1, 118.Google Scholar
Bocca, B., & Pinto, A. (2014). Toxic metals contained in cosmetics: A status report. Regulatory Toxicology and Pharmacology, 68, 447467.CrossRefGoogle ScholarPubMed
Bonglaisin, J. N., Chelea, M., Tsafack, T. J. J., Djiele, P. N., Lantum, D. N., & Ngondé, E. M. C. (2017). Assessment of haemoglobin status and transplacental transport of lead and calcium during geophagy. Journal of Nutritional Disorders & Therapy, 7. https://doi.org/10.4172/2161-0509.1000204CrossRefGoogle Scholar
Bragg, R., Jansen, A., Coetzee, M., van der Westhuizen, W., & Boucher, C. (2014). Bacterial resistance to quaternary ammonium compounds (QAC) disinfectants. Advances in Experimental Medicine and Biology, 808, 113.CrossRefGoogle ScholarPubMed
Bubik, J. S. (1992). Preparation of sterile talc for treatment of pleural effusion. American Journal of Hospital Pharmacy, 49, 562563.Google Scholar
Buck, B.J., Londono, S.C., McLaurin, B.T., Metcalf, R. Mouri, Selinus, O. & Shelembe, R. (2016). The emerging field of medical geology in brief: Some examples. Environmental Earth Sciences, 75, 449. https://doi.org/10.1007/s12665-016-5362-6.CrossRefGoogle Scholar
BVL. (2017). Technically avoidable heavy metal contents in cosmetic products. Journal of Consumer Protection and Food Safety, 12, 5153. https://doi.org/10.1007/s00003-016-1044-2CrossRefGoogle Scholar
Caflisch, K. M., Schmidt-Malan, S. M., Mandrekar, J. N., Karau, M. J., Nicklas, J. P., Williams, L. B., & Patel, R. (2018). Antibacterial activity of reduced iron clay against pathogenic bacteria associated with wound infections. International Journal of Antimicrobial Agents, 52, 692696.CrossRefGoogle ScholarPubMed
Calabrese, I., Liveri, M. L. T., Ferreira, M. J., Bento, A., Vaz, P. D., Calhorda, M. J., & Nunes, C. D. (2016). Porous materials as delivery and protective agents for vitamin A. RSC Advances, 6, 6649566504.CrossRefGoogle Scholar
Calabrese, I., Gelardi, G., Merli, M., Liveri, M. L. T., & Sciascia, L. (2017). Clay-Biosurfactant Materials as Functional Drug Delivery Systems: Slowing Down Effect in the in Vitro Release of Cinnamic Acid. Applied Clay Science, 135, 567574.CrossRefGoogle Scholar
Carbajo, J. M., & Maraver, F. (2015). Hydrogen sulfide and health. New insights. Balnea, 10, 93105.Google Scholar
Carbajo, J.M. & Maraver, F. (2016). Absorção cutânea de sulfureto de hidrogénio. Revista Factores de Risco, 41, Jul-Set, 5462.Google Scholar
Carbajo, J.M. & Maraver, F. (2018). Salt water and skin interactions: New lines of evidence. International Journal of Biometeorology. Published online. https://doi.org/10.1007/s00484-018-1545-z.CrossRefGoogle Scholar
Carretero, M. I. (2002). Clay Minerals and their beneficial effects upon human health: A review. Applied Clay Science, 21, 155163.CrossRefGoogle Scholar
Carretero, M. I. (2020a). Clays in pelotherapy. A review. Part I: Mineralogy, chemistry, physical and physicochemical properties. Applied Clay Science, 189, 105526. https://doi.org/10.1016/j.clay.2020.105526CrossRefGoogle Scholar
Carretero, M. I. (2020b). Clays in pelotherapy. A review. Part II: Organic compounds, microbiology and medical applications. Applied Clay Science, 189, 105531. https://doi.org/10.1016/j.clay.2020.105531CrossRefGoogle Scholar
Carretero, M. I., & Pozo, M. (2009). Clay and non-clay minerals in the pharmaceutical industry, Part I: Excipients and medical applications. Applied Clay Science, 46, 7380.CrossRefGoogle Scholar
Carretero, M. I., & Pozo, M. (2010). Clay and non-clay minerals in the pharmaceutical and cosmetic industries, Part II: Active ingredients. Applied Clay Science, 47, 171181.CrossRefGoogle Scholar
Carretero, M. I., Gomes, C.S.F., & Tateo, F. (2006). Clays and Human Health. In Bergaya, F. et al. (Eds.), Handbook of Clay Science (pp. 717741). Developments in Clay Science.CrossRefGoogle Scholar
Carretero, M.I., Gomes, C.S.F., & Tateo, F. (2013). Clays, Drugs, and Human Health. Chapter 5.5 In: Bergaya, F. & Lagaly, G. (Eds.), Handbook of Clay Science (2nd edition), Part B: Technics and Applications, (pp 711764). Elsevier, Amsterdam . https://doi.org/10.1016/B978-0-08-098259-5.00025-1.CrossRefGoogle Scholar
Cerezo, P., Aguzzi, C., Garcés, A., Viseras, C., & Setti, M. (2006). Propiedades termoterápicas y farmacotécnicas de formulaciones de peloides com excipientes hidrofílicos. In Suárez, M., Vicente, M. A., Rives, V., & Sánchez, M. J. (Eds.), Materiales Arcillosos: de la Geologia a las Nuevas Aplicaciones (pp. 279290). Gráficas Varona.Google Scholar
Chandler, D. J., Grijsen, M. L., & Fuller, L. C. (2021). Dermatology, 237, 236247. https://doi.org/10.1159/000506045CrossRefGoogle Scholar
Chang, F. Y., Lu, C. L., Chen, C. Y., & Luo, J. C. (2007). Efficacy of dioctahedral smectite in treating patients of diarrhea predominant irritable bowel syndrome. Journal of Gastroenterology and Hepatology, 22, 22662272.CrossRefGoogle ScholarPubMed
Coddish, S., Abu-Shakra, M., Flusser, D., Friger, M., & Sukenik, S. (2005). Mud compress therapy for the hands of patients with rheumatoid arthritis. Rheumatology International, 25, 4954.CrossRefGoogle Scholar
Coffey, D., & Dawson, K. (2015). Review of the feed industry from a historical perspective and implications for its future. Journal of Applied Animal Nutrition, 4, 111.Google Scholar
Crivelli, P. E. (1986). Non-filarial elephantiasis in Nyambene range: A geochemical disease. East African Medical Journal, 63(3), 191194.Google Scholar
Cunha, A.M.F. (2010). Aplicação na Olaria de Terra-Rossa de Ocorrências Anticlinal de Estremoz. Tese de Mestrado em Engenharia Geológica, Universidade de Évora, 122 pp.Google Scholar
Dai, T., Tanaka, M., Huang, Y.-Y., & Hamblin, M. (2011). Chitosan preparation for wounds and burns: Antimicrobial and wound-healing effects. Expert Review of Anti-infective Therapy, 9(7), 857879.CrossRefGoogle ScholarPubMed
Danford, D. E. (1982). Pica and nutrition. Annual Review of Nutrition, 2, 303322.CrossRefGoogle ScholarPubMed
Davey, G., Tekola, F., & Newport, M. J. (2007). Podoconiosis: noninfectious geochemical elephantiasis. Intensive and Critical Care Nursing, 101, 11751180.Google ScholarPubMed
Davies, T. C. (2008). Environmental health impacts of East African Rift volcanism. Environmental Geochemistry and Health, 30, 325338. https://doi.org/10.1007/s10653-008-9168-7CrossRefGoogle ScholarPubMed
Davies, T. C. (2010). Medical Geology in Africa. In Selinus, O., Finkelman, R. B., & Centeno, J. A. (Eds.), Medical Geology: A Regional Synthesis (pp. 199219). Springer.CrossRefGoogle Scholar
Davies, T. C., & Mundlano, H. R. (2010). Environmental health impacts of dispersed mineralization in South Africa. Journal of African Earth Sciences, 58(4), 652666.CrossRefGoogle Scholar
De Paiva, L. B., Morales, A. R., & Diaz, F. R. V. (2008). Organoclays: Properties, Preparation and Applications. Applied Clay Science, 42, 824.CrossRefGoogle Scholar
Delcea, M., Mohwald, H., & Skirtach, A. G. (2011). Stimuli-responsive LbL capsules and nanoshells for drug delivery. Advanced Drug Delivery Reviews, 63, 730747.CrossRefGoogle ScholarPubMed
Delgado, R., Fernández González, M. V., Gzouly, M., Molinero-García, A., Cervera-Mata, A., Sánchez-Marañón, M., Herruzo, M., & Martín-García, J. M. (2020). The quality of Spanish cosmetic-pharmaceutical talcum powders. Applied Clay Science, 193, 105691. https://doi.org/10.1016/j.clay.2020.105691CrossRefGoogle Scholar
Deribe, K. (2017). Podoconiosis today: Challenges and opportunities. Transactions of the Royal Society of Tropical Medicine and Hygiene, 112, 473475.CrossRefGoogle Scholar
Deribe, K., Cano, J., Newport, M.J., & others, many (2015a). Mapping and Modelling the geographic distribution and the environmental limits of podoconiosis in Ethiopia. PLoS Neglected Tropical Diseases, 9: e0003946.CrossRefGoogle ScholarPubMed
Deribe, K., Wanji, S., Shafi, O., & 4 others (2015b). The feasibility of eliminating podoconiosis. WHO Bulletin, 712718.CrossRefGoogle Scholar
Deribe, K., Brooker, S., Pullan, R., & others, many (2015c). Epidemiology and individual, household and geographical risk factors of podoconiosis. American Journal of Hygiene and Tropical Medicine, 148158.CrossRefGoogle Scholar
Deribe, K., Kebede, B., Mengistu, B., Negussie, H., Sileshi, M., Tamiru, M., Tomczyk, S., Tekola-Ayele, F., Davey, G., & Fentaye, A. (2017). Podoconiosis in Ethiopia: From Neglect to Priority Public Health Problem. Ethiopian Medical Journal, 55(Suppl. 1), 6574.Google ScholarPubMed
Deribe, K., Cano, J., Trueba, M. L., Newport, M. J., & Davey, G. (2018). Global epidemiology of podoconiosis: A systematic review. PLoS Negl Trop Dis, 12(3). https://doi.org/10.1371/journal.pntd.0006324CrossRefGoogle ScholarPubMed
Diko, M. L., & Siewe épse Diko, C.N. (2014). Physico-chemistry of geophagic soils ingested to relief nausea and vomiting during pregnancy. African Journal of Traditional, Complementary, and Alternative Medicines: AJTCAM, 11, 2124.CrossRefGoogle ScholarPubMed
Domenici, D. (2019). Tasting clay, Testing clay. Medicinal Earths, Bucarophagy and Experimental Knowledge in Lorenzo Legati's Museo Cospiano (1677). Cromohs (Cyber Review of Modern Historiography), 22, 16 pp. https://doi.org/10.13128/cromohs-11701.Google Scholar
Donauerová, A., Bujdák, J., Smolinská, M., & Bujdáková, H. (2015). Photophysical and antibacterial properties of complex systems based on smectite, a cationic surfactant and methylene blue. Journal of Photochemistry & Photobiology, B151, 135141.CrossRefGoogle Scholar
Duffin, C.J., Moody, R.T.J., & Gardner-Thorpe, C. (editors). (2013). A History of Geology and Medicine. Geological Society of London. Special Publication 375; https://sp.lyellcollection.org/content/375/1.Google Scholar
European Food Safety Authority (EFSA) (2017). Guidance on the assessment of the safety of feed additives for the target species. EFSA Journal 15(10), 5021. https://doi.org/10.2903/j.efsa.2017.5021Google Scholar
Favero, J. S., Parisotto-Petele, , Weiss-Angeli, V., Brandalise, R. N., Gomes, L. B., Bergman, C. P., & Santos, V. (2016). Physical and Chemical Characterization and Method for the Decontamination of Clays for Application in Cosmetics. Applied Clay Science, 124–125, 252259.CrossRefGoogle Scholar
Feleke, B. E. (2017). Determinants of Podoconiosis: A Case Control Study. Ethiopian Journal of Health Science, 27(5), 501506.CrossRefGoogle ScholarPubMed
Fernández-González, M. V., Martin-Garcia, J. M., Delgado, G., Párraga, J., & Delgado, R. (2013). A study of the chemical, mineralogical and physicochemical properties of peloids prepared with two medicinal mineral waters from Lanjarón Spa (Granada, Spain). Applied Clay Science, 80–81, 107116.CrossRefGoogle Scholar
Fernández-González, M. V., Martin-Garcia, J. M., Delgado, G., Párraga, J., Carretero, M. I., & Delgado, R. (2017). Physical properties of peloids prepared with medicinal mineral waters from Lanjarón Spa (Granada, Spain). Applied Clay Science, 135, 465474.CrossRefGoogle Scholar
Fernández-González, M. V., Carretero, M. I., Martín García, J. M., Molinero, A., & Delgado, R. (2021). Peloids prepared with three mineral-medicinal waters from spas in Granada. Their suitability for use in pelotherapy. Applied Clay Science, 202, 105969. https://doi.org/10.1016/j.clay.2020.105969CrossRefGoogle Scholar
Ferrand, T., & Yvon, J. (2000). Thermal properties of clay pastes for pelotherapy. Applied Clay Science, 6, 2138.CrossRefGoogle Scholar
Finkelman, R. B. (2019). The influence of clays on human health: A medical geology perspective. Clays and Clay Minerals, 67(1), 16. https://doi.org/10.1007/s42860-018-0001-9CrossRefGoogle Scholar
Galzigna, L., Moretto, C., & Lalli, A. (1996). Physical and biochemical changes of thermal mud after maturation. Biomedicine & Pharmacotherapy, 50(6–7), 306308.CrossRefGoogle ScholarPubMed
Gamiz, E., Martin-Garcia, J. M., Fernandez-Gonzalez, M. V., Delgado, G., & Delgado, R. (2009). Influence of water type and maturation time on the properties of kaolinite-saponite peloids. Applied Clay Science, 46, 117123.CrossRefGoogle Scholar
Gan, F., Hang, X., Huang, Q., & Deng, Y. (2018). Assessing and modifying China bentonite for aflatoxin adsorption. Applied Clay Science., 168(11), 348354. https://doi.org/10.1016/j.clay.2018.12.001CrossRefGoogle Scholar
Garcia Rodriguez, M.L. & Álvarez Garcia, B. (2019). Origen y distribución de arcillas utilizadas en la fabricación de búcaros: bucarophagy in early modern times. Physis Terrae, v.1,1, 5771. ISSN: 2184-626X, http://revistas.uminho.pt/index.php/physisterrae/index.Google Scholar
Ghadiri, M., Chrzanowski, W., & Rohanizadeh, R. (2015). Biomedical applications of cationic clay minerals. RSC Advances, 5, 37. https://doi.org/10.1039/C4RA16945JCrossRefGoogle Scholar
Glick, J. B., Kaur, R. R., & Siegel, D. (2013). Achieving hemostasis in dermatology-Part II: Topical hemostatic agents. Indian Dermatology Online Journal, 4(3), 172176.Google ScholarPubMed
Gomes, C. S. F. (2013). Naturotherapies based on minerals. Geomaterials, 3, 114.CrossRefGoogle Scholar
Gomes, C. S. F. (2015). In pelotherapy what is more important, the peloid solid phase or the peloid liquid phase? Balnea, 10, 125142.Google Scholar
Gomes, C. S. F. (2018). Healing and edible clays: A review of basic concepts, benefits and risks. Environmental Geochemistry and Health, 40, 17391765. https://doi.org/10.1007/s10653-016-9903-4CrossRefGoogle Scholar
Gomes, C.S.F. (2021). Chapter 1 - Introduction: Targets and Concepts. In: C. Gomes & M. Rautureau (Eds.), Minerals latu sensu and Human Health: Benefits, Toxicology and Pathologies (pp. 118). https://doi.org/10.1007/978-3-030-65706-2_1CrossRefGoogle Scholar
Gomes, C.S.F. & Rautureau, M. (2021a). Chapter 2 - Historical Evolution of the Use of Minerals in Human Health. In: C. Gomes & M. Rautureau (Eds.), Minerals latu sensu and Human Health: Benefits, Toxicology and Pathologies, ISBN: 978-3-030-65705-5, https://doi.org/10.1007/978-3-030-65706-2_2.CrossRefGoogle Scholar
Gomes, C.S.F. & Rautureau, M. (2021b). Chapter 6 - General data on clay science, crystallochemistry, and systematics of clay minerals, clay typologies, and clay properties and applications. In: C. Gomes & M. Rautureau (Eds.), Minerals latu sensu and Human Health: Benefits, Toxicology and Pathologies, ISBN: 978-3-030-65705-5, https://doi.org/10.1007/978-3-030-65706-2_6.CrossRefGoogle Scholar
Gomes, C. S. F., & Silva, J. B. P. (2007). Minerals and clay minerals in medical geology. Applied Clay Science, 36, 421.CrossRefGoogle Scholar
Gomes, C. S. F., Carretero, M. I., Pozo, M., Maraver, F., Cantista, P., Armijo, F., Legido, J. L., Teixeira, F., Rautureau, M., & Delgado, R. (2013). Peloids and pelotherapy: Historical evolution, classification and glossary. Applied Clay Science, 75–76, 2838.CrossRefGoogle Scholar
Gomes, J.H.C., Gomes, C.S.F., Silva, E.F., Saraiva, J.A., & Pinto, C.A. (2018). Application of high-pressure methods in the sanitary safety of healing muds/peloids. Abstract Book of the 56thEuropean High Pressure Research Group Meeting (EHPRGM 2018), Aveiro, Portugal, 392393.Google Scholar
Gomes, C.S.F., Silva, J.B.P., Viegas Fernandes, J., & Viegas Fernandes, F.M. (2019a). Thalassotherapy in Porto Santo Island of the Madeira Archipelago: Facts and Prospects. Boletin Sociedad Espanola de Hidrologia Medica, 34(1), 933; ISSN: 0214-2813. https://doi.org/10.23853/bsehm.2019.0953.CrossRefGoogle Scholar
Gomes, J.H.C., Gomes, C.S.F., Saraiva, J., Silva, E.A.F, & Silva, J.B.P. (2019b). Methodologies adopted for eradication of pathogenic microorganisms in peloids. International Symposium on Thermalism and Quality of Life (STCV-2019), Ourense, Spain.Google Scholar
Gomes, C.S.F., Gomes, J.H.C., & Silva, E.A.F. (2020). Bacteriostatic and Bactericidal Clays: An Overview. Environmental Geochemistry and Health, https://doi.org/10.1007/978-3-030-65706-2/10.1007/s10653-020-00628-w.CrossRefGoogle Scholar
Gomes, C.S.F., Rautureau, M., Gomes, J.H.C., & Silva, E.A.F. (2021a). Chapter 7 - Interactions of Clay and Clay Minerals in the Human Health. In: C. Gomes & M. Rautureau (Eds.), Minerals latu sensu and Human Health: Benefits, Toxicology and Pathologies, ISBN: 978-3-030-65705-5, https://doi.org/10.1007/978-3-030-65706-2_7.CrossRefGoogle Scholar
Gomes, C.S.F., Santos, D.F.G., & Amaral, M.H. (2021b). Chapter 9 -Minerals in Pharmacy and Cosmetics. In: Minerals latu sensu and Human Health: Benefits, Toxicology and Pathologies, ISBN: 978-3-030-65705-5, https://doi.org/10.1007/978-3-030-65706-2_9.CrossRefGoogle Scholar
Gris, B., Sforza, E., Morosinotto, T., Bertucco, A., & La Rocca, N. (2017). Influenceof light and temperature ongrowth and high-value molecules productivity from Cyanobacterium aponinum. Journal of Applird Phycology, 29, 766774.Google Scholar
Gris, B., Treu, L., Zampieri, R. M., Caldara, F., Romualdi, C., Campanaro, S., & Rocca, L. (2020). Microbiota of the therapeutic Euganean thermal muds with a focus on the main cyanobacteria species. Microorganisms, 8, 1590. https://doi.org/10.3390/microorganisms8101590CrossRefGoogle Scholar
Guégan, R. (2019). Organoclay applications and limits in the environment. Comptes Rendus Chimie, 22, 132141.CrossRefGoogle Scholar
Hall, A. J., & Photos-Jones, E. (2008). Assessing past beliefs and practices: The case of Lemnian Earth. Archeometry, 50, 10321049.CrossRefGoogle Scholar
Halsted, J. A. (1968). Geophagia in man: Its nature and nutritional effects. The American Journal of Clinical Nutrition, 21, 13841393.CrossRefGoogle ScholarPubMed
HC-SC, Health Canada-Santé Canada (2012). Guidance on Heavy Metal Impurities in Cosmetics. Available at: <http://www.hc-sc.gc.ca/spc-spc/pubs/indust/heavy-metals-metaux-lourds/index-eng.php>..>Google Scholar
He, H., Ma, L., Zhu, J., Frost, R. L., Theng, B. K. G., & Bergaya, F. (2014). Synthesis of organoclays: A critical review and some unresolved issues. Applied Clay Science, 100, 2228.CrossRefGoogle Scholar
He, Y., Wu, Z., Tu, L., Han, Y., Zhang, G., & Li, C. (2015). Encapsulation and characterization of slow-release microbial fertilizer from the composites of bentonite and alginate. Applied Clay Science, 109–110, 6875.CrossRefGoogle Scholar
Hong, S. I., & Rhim, J. W. (2008). Antimicrobial activity of organically modified nano-clays. Journal of Nanoscience and Nanotechnology, 8, 58185824.CrossRefGoogle ScholarPubMed
Hosseini, F., Hosseini, F., Jafari, S. M., & Taheri, A. (2018). Bentonite nanoclay-based drug-delivery systems for treating melanoma. Clay Minerals, 53, 5363.CrossRefGoogle Scholar
Huebl, L., Leick, S., Guettl, L., Akello, G., & Kutalek, R. (2016). Geophagy in northern Uganda: perspectives from consumers and clinicians. The American Journal of Tropical Medicine and Hygiene, 95, 14401449. https://doi.org/10.4269/ajtmh.15-0579CrossRefGoogle ScholarPubMed
Jaynes, W. F., & Zartman, R. E. (2011). Aflatoxin toxicity reduction in feed by enhanced binding to surface-modified clay additive. Toxins, 3(6), 551565.CrossRefGoogle Scholar
Jones, T.P., Berube, K.A., Wlodarczyk, A.J., Prytherch, Z.C., Hassan, Y., Potter, S., & Adams, R. (2015). The bioreactivity of “red clays” from basaltic terrains. EuroClay Conference 2015, Proceedings. In: Williams, L., Jones, T., & Rocha, F. (Eds.), Bioreactive clay mineral impacts on environmental and human health (p 137). Edinburgh, UK.Google Scholar
Khiari, I., Meftech, S., Sánchez-Espejo, R., Cerezzo, P., Aguzzi, C., López-Galindo, A., Jamoussi, F., & Iborra, C. V. (2014). Study of Tunisian medina clays used in therapeutic and cosmetic mud-packs. Applied Clay Science, 101, 141148.CrossRefGoogle Scholar
Kikouama, O. J. R., & Baldé, L. (2010). From Edible Clay to Clay-Containing Formulation for Optimization of the Oral Delivery of Some Trace Elements: A Review. International Journal of Food Science and Nutrition, 61(8), 121B.Google ScholarPubMed
Kim, M. H., Choi, G., Elzatahry, A., Vinu, A., Choy, Y. B., & Choy, J.-H. (2016). Review of Clay-Drug Hybrid Materials for Biomedical Applications: Administration Routes. Clays and Clay Minerals, 64(2), 115130.CrossRefGoogle ScholarPubMed
Kinninmonth, M., Liauw, C. M., Verran, J., Taylor, R. L., Edwards-Jones, V., & Shaw, D. M. (2014). Nano-layered inorganic-organic hybrid materials for the controlled delivery of antimicrobials. Macromolecular Symposia, 338, 3644.CrossRefGoogle Scholar
Kmiec, I., Nguyen, Y., Rouger, C., Berger, J. L., Lambert, D., Hentzien, M., Lebrun, D., Robbins, A., Drame, M., & Bani-Sadr, F. (2017). Factors associated with geophagy and knowledge about its harmful effects among native sub-Saharan African, Caribbean and French Guiana HIV patients living in northern France. AIDS and Behavior, 21, 36303635. https://doi.org/10.1007/s10461-016-1661-xCrossRefGoogle ScholarPubMed
Krishnan, B., & Mahalingam, S. (2017). Facile synthesis and antimicrobial activity of manganese oxide/bentonite nanocomposites. Research on Chemical Intermediates, 43, 23512365.CrossRefGoogle Scholar
Kutalek, R., Wewalka, G., Gundacker, C., Auer, H., Wilson, J., Haluza, D., Huhulescu, S., Hillier, S., Sager, M., & Prinz, A. (2010). Geophagy and potential health implications: geohelminths, microbes and heavy metals. Transactions of the Royal Society of Tropical Medicine and Hygiene, 104, 787795. https://doi.org/10.1016/j.trstmh.2010.09.002CrossRefGoogle ScholarPubMed
Legido, J. L., & Mourelle, M. L. (2008). Investigaciones en el Ámbito Iberoamericano sobre Peloides Termales (p. 308). Universidad de Vigo.Google Scholar
Legido, J. L., Medina, C., Mourelle, M. L., Carretero, M. I., & Pozo, M. (2007). Comparative study of the cooling rates of bentonite, sepiolite, and common clays for their use in Pelotherapy. Applied Clay Science, 36(1–3), 148160.CrossRefGoogle Scholar
Li, Y., Li, H., Xiao, L., Zhou, L., Shentu, J., Zhang, X., & Fan, J. (2012). Hemostatic efficiency and wound healing properties of natural zeolite granules in a lethal rabbit model of complex groin injury. Materials, 5, 25862596.CrossRefGoogle Scholar
Londoño, S. C., Hartnett, H. E., & Williams, L. B. (2017). Antibacterial activity of aluminum in clay from the Colombian Amazon. Environmental Science and Technology, 51(4), 24012408.CrossRefGoogle ScholarPubMed
López-Galindo, A., & Viseras, C. (2004). Pharmaceutical and Cosmetic Applications of Clays. In Wypych, F. & Satyanarayana, K. G. (Eds.), Clay Surfaces: Fundamentals and Applications (pp. 267289). Elsevier Ltd.CrossRefGoogle Scholar
López-Galindo, A., Viseras, C., & Cerezo, P. (2007). Compositional, technical and safety specifications of clays to be used as pharmaceutical and cosmetic products. Applied Clay Science, 36, 5163.CrossRefGoogle Scholar
López-Galindo, A., Viseras, C., Aguzzi, C., & Cerezo, P. (2011). Pharmaceutical and cosmetic uses of fibrous clays. In: Galán, E. & Singer, A. (Eds.), Advances in the crystal chemistry of sepiolite and palygorskite (pp. 290324). Developments in Palygorskite-Sepiolite Research, Chapter 13. Developments in Clay Science, Vol. 3, Elsevier.Google Scholar
Loretz, L., Api, A. M., Barraj, L., Burdick, J., & 10 others. (2006). Exposure data for personal care products: hairspray, spray perfume, liquid foundation, shampoo, body wash, and solid perspirant. Food and Chemical Toxicology, 44(12), 20082018.CrossRefGoogle Scholar
Lv, Y., Tao, Y., Yang, Z., Zhao, W., Zhang, M., & Wang, Q. (2014). Constraint on selenium bioavailability caused by its geochemical behavior in typical Kaschin-Beck disease areas in Aba, Sichuan Province of China. Science of the Total Environment, 493, 737749.CrossRefGoogle ScholarPubMed
Lvov, Y. M., & Price, R. R. (2008). Chapter 14 – Halloysite nanotubes, a novel substrate for the controlled delivery of bioactive molecules. In Ruiz-Hitzky, E., Ariga, K., & Lvov, Y. M. (Eds.), Bio-inorganic hybrid nanomaterials: Strategies, synthesis, characterization and applications. Wiley-VCH Verlag GmbH & Co.Google Scholar
Lvov, Y. M., Schchukin, D. G., Mohwald, H., & Price, R. R. (2008). Halloysite clay nanotubes for controlled release of protective agents. ACS Nano, 2(5), 814820.CrossRefGoogle ScholarPubMed
Lvov, Y. M., Devilliers, M. M., & Fakhrullin, R. F. (2016). The application of halloysite tubule nanoclay in drug delivery. Expert Opinion on Drug Delivery, 13, 977986.CrossRefGoogle ScholarPubMed
Lyles, M. P. (2018). Biological, chemical and environmental hazards of desert dust to military personnel. In Vivo, B. De, Belkin, H. E., & Lima, A. (Eds.), Environment Geochemistry ((2nd ed., pp. 467485). Elsevier.Google Scholar
Macgregor, A. (2013). Medicinal terra sigillata: A historical, geographical and typological review. Geological Society, London, Special Publication, 375, 113136.CrossRefGoogle Scholar
Maisanaba, S., Pichardo, S., Puerto, M., Gutiérrez-Praena, D., & Cameán, A. M. (2015). Toxicological evaluation of clay minerals and derived nanocomposites: A review. Environmental Research, 138, 233254.CrossRefGoogle ScholarPubMed
Maki, S. R., & Haney, S. (2017). Calcium montmorillonite clay for the reduction of aflatoxin residues in milk and dairy products. Journal of Dairy & Veterinary Sciences, 2, 18.Google Scholar
Maraver, F. (Ed.). (2006). Establecimientos balneários: História, literatura y medicina. Balnea, 1, 1186.Google Scholar
Maraver, F. (2017). Investigación actual en peloterapia (pp. 3335). Libro de Resúmenes del V Congreso Iberoamericano de Peloides.Google Scholar
Maraver, F., Fernandez-Torán, M. A., Corvillo, I., Morer, C., Váquez, I., Aguillera, L., & Armijo, F. (2015). Peloterapia: Una Revisión. Medicina Naturista, 9(1), 3846.Google Scholar
Maraver, F., Armijo, F., Fernández-Toran, M.A., Armijo, O., Ejeda, J.M., Vazquez, I., Corvillo, I., & Torres-Piles, S. (2021). Peloids as thermotherapeutic agents. International Journal of Environmental Research and Public Health, 18(4). https://doi.org/10.3390/ijerph18041965CrossRefGoogle ScholarPubMed
Marcolongo, G., De Appolonia, F., Venzo, A., Berrie, C. P., Carofiglio, T., & Ceschi Berrini, C. (2006). Diacylglycerolipids isolated from a thermophile cyanobacterium from the Euganean hot springs. Natural Product Research, 20, 766774.CrossRefGoogle ScholarPubMed
Massaro, M., Collletti, C. G., Lazzara, G., & Riela, S. (2018). The use of some clay minerals as natural-resources for drug carrier applications. Journal of Functional Biomaterials, 9, 58. https://doi.org/10.3390/jfb9010058Médica31119.146.CrossRefGoogle ScholarPubMed
Matas, A.G., Torres, A.H., & Úbeda, J.C.B. (2014). Peloterapia: Conceptos generales, terminología, clasificación. In: A.H. Torres (Coordinator), Peloterapia: Aplicaciones médicas y cosméticas de fangos termales, (pp. 1931). Ed. Fundación Bílbilis, Madrid.Google Scholar
Meijide, R., Salgado, T., Lianes, A., Legido, J. L., Mourelle, M. L., & Gómez, C. (2010). Evaluación de los câmbios en la piel trás la aplicación de peloides mediante métodos de bioengenharia cutânea. In Maraver, F. & Carretero, M. I. (Eds.), Libro de Resúmenes del II Congreso Iberoamericano de Peloides (pp. 4849). C.E.R.S.-A.Google Scholar
Meijide, R., Mourelle, M.L., Vela-Anero, A., López, E.M., Burguera, E.F., & Pérez, C.G. (2014). Aplicación a pacientes: Peloterapia en patologias dermatológicas. In: A.H. Torres (Coordinator), Peloterapia: Aplicaciones médicas y cosméticas de fangos termales, (pp. 169183). Ed. Fundación Bílbilis, Madrid.Google Scholar
Meijide, R., Burguera, E. F., & Vela-Anero, A. (2015). Peloterapia y Artrosis. Balnea, 10, 289300.Google Scholar
Merino, D., Mansilla, A. Y., Casalongué, C. A., & Alvarez, V. A. (2018). Preparation, characterization a in vitro testing of nanoclay antimicrobial activities and elicitor capacity. Journal of Agricultural and Food Chemistry, 66, 31013109.CrossRefGoogle ScholarPubMed
Miller, J. D., Collins, S. M., Omotayo, M., Martin, S. L., Dickin, K. L., & Young, S. L. (2018). Geophagic earths consumed by women in western Kenya contain dangerous levels of lead, arsenic, and iron. American Journal of Human Biology. https://doi.org/10.1002/ajhb.23130CrossRefGoogle Scholar
Moghadas, B., Dashtimoghhadam, E., Mirzadeh, H., Seidi, F., Hasani-Sadrabadi, M. (2016). Novel chitosan-based nanobiohybrid membranes for wound dresssing applications. Rsc Advances, 6, 77017711.CrossRefGoogle Scholar
Molla, Y. B., Wardrop, N. A., Le Blond, J. S., Baxter, P., & Newport, M.J., Atkinson, P.M., & Davey, G. (2014). Modelling environmental factors correlated with podoconiosis: A geospatial study of non-filarial elephantiasis. International Journal of Health Geographics, 13, 24.CrossRefGoogle ScholarPubMed
Moraes, J. D. D., Bertolino, S. R. A., Cuffini, S. L., Ducart, D. F., Bretzke, P. E., & Leonardi, G. R. (2017). Clay minerals: Properties and applications to dermocosmetic products and perspectives of natural raw materials for therapeutic purposes - A review. International Journal of Pharmaceutics, 534, 213219.CrossRefGoogle Scholar
Morrison, K. D., Misra, R., & Williams, L. B. (2016). Unearthing the antibacterial mechanism of medicinal clay: A geochemical approach to combating antibiotic resistance. Science Reports, 6, 19043.CrossRefGoogle Scholar
Mourelle, M., Gómez, C. P., & Legido, J. L. (2017). The potential use of marine microalgae and cyanobacteria in cosmetics and thalasso-therapy. Cosmetics, 4, 46.CrossRefGoogle Scholar
Mousa, M., Evans, N. D., Oreffo, R. O. C., & Dawson, J. I. (2018). Clay nanoparticles for regenerative medicine and biomaterial design: A review of clay bioactivity. Biomaterials, 159, 2042014.CrossRefGoogle ScholarPubMed
Nadziakiewicza, M., Kehoe, S., & Micek, P. (2019). Physico-chemical properties of clay minerals and their use as a health promoting feed additive. Animals, 9, 714. https://doi.org/10.3390/ani9100714CrossRefGoogle ScholarPubMed
Nigmatullin, R., Gao, F., & Konovalova, V. (2009). Permanent, nonleaching antimicrobial polyamide nanocomposites based on organoclays modified with a cationic polymer. Macromolecular Materials and Engineering, 294, 795805.CrossRefGoogle Scholar
Nohynek, G. J., Antigna, E., Re, T., & Toutain, H. (2010). Safety assessment of personal care products/cosmetics and their ingredients. Toxicology and Applied Pharmacology, 243(2), 239259.CrossRefGoogle ScholarPubMed
Nones, J., Riella, H. G., Trentini, A. G., & Nones, J. (2015). Effects of bentonite on different cell types. A brief review. Applied Clay Science, 103–106, 225230.CrossRefGoogle Scholar
Nordberg, M., & Cherian, M. G. (2005). Biological Responses of Elements. In Selinus, O., Alloway, B., Centeno, J. A., Finkelman, R. B., Fuge, R., Lindh, U., & Smedley, P. (Eds.), Essentials of Medical Geology: Impacts of the Natural Environment on Public Health (pp. 179200). Elsevier Academic Press.Google Scholar
Oliveira, K. C. B. F., Meneguin, A. B., Bertolino, L. C., Filho, E. C., Leite, J. R. S. A., & Eiras, C. (2018). Immobilization of biomolecules on natural clay minerals for medical applications. International Journal of Advances in Medical Biotechnology, 1(1), 3140.Google Scholar
Onnainty, R., Onida, B., Páez, P., Longhi, M., Barresi, A., & Granero, G. (2016). Targeted chitosan-based bionanocomposites for controlled oral mucosal delivery of chlorhexidine. International Journal of Pharmacy, 509, 408418.Google Scholar
Otto, C. C., & Haydel, S. E. (2013). Exchangeable ions are responsible for the in vitro antibacterial properties of natural clay mixtures. PLOS ONE/ www.plosone, 8(5), 19.CrossRefGoogle ScholarPubMed
Otto, C. C., Koehl, J. L., Solanky, D., & Haydel, S. E. (2014). Metal ions, nonmetal-catalyzed oxidative stress, cause clay leachate antibacterial activity. Plos One, 9, e115172.CrossRefGoogle Scholar
Patel, H. A., Somani, R. S., Bajai, H. C., & Jasra, R. V. (2006). Nanoclays for polymer nanocomposites, paints, inks, greases, and cosmetic formulations, drug vehicle and waste water treatment. Bulletin of Materials Science, 29, 133145.CrossRefGoogle Scholar
Phillips, T. (1999). Dietary clay in the chemoprevention of aflatoxin-nduced disease. Toxicological Sciences, 52(1), 118126.CrossRefGoogle ScholarPubMed
Photos-Jones, E. & Hall, A.J. (2011). Lemnian Earth and the Earths of the Agean: An Archeological Guide to Medicines, Pigments and Washing Powders. Potinguir Press, Glasgow, UK.Google Scholar
Photos-Jones, E., Keane, C., Jones, A. X., Stamatakis, M., Robertson, P., Hall, A. J., & Leanord, A. (2015). Testing Dioscorides' medicinal clays for their antibacterial properties: The case of Samian Earth. Journal of Archaeological Science, 57, 257267.CrossRefGoogle Scholar
Photos-Jones, E., Edwards, C., Haner, F., Lawton, L., Keane, C., Leanord, A., & Perdikatsis, V. (2017). Archaelogical medicinal earths as antibacterial agents: the case of the Basel Lemnian sphragides. In: C.J. Duffin, C. Gardner-Thorpe, & R.T.J. Moody (Eds.), Geology and Medicine: Historical Connections. Geological Society, London, Special Publications 452. https://doi.org/10.1144/SP452.6.CrossRefGoogle Scholar
Portugal-Cohen, M., Soroka, Y., Ma'or, Z., Oron, M., Zioni, T., Menahen, F., Neuman, R., Kohen, R., & Milner, Y. (2009). Protective effects of a cream containing Dead Sea minerals against UVB-induced stress in human skin. Experimental Dermatology, 18.CrossRefGoogle Scholar
Price EW (1976) The association of endemic elephantiasis of the lower legs in East Africa with soil derived from volcanic rocks. Transactions of the Royal Society of Tropical Medicine and Hygiene, 288295CrossRefGoogle Scholar
Price, E. W. (1977). The site of lymphatic blockade in endemic (non-ilarial) elephantiasis of the lower legs. Journal of Tropical Medicine and Hygiene, 80, 230237.Google ScholarPubMed
Price, E. W. (1988). Non-Filarial elephantiasis - Confirmed as a geochemical disease, and re-named podoconiosis. Ethiopian Medical Journal, 26, 151153.Google Scholar
Price, E. W., & Bailey, D. (1984). Environmental factors in the etiology of endemic elephantiasis of the lower legs in tropical Africa. Tropical and Geographical Medicine, 36, 15.Google ScholarPubMed
Rabea, E. I., Badawy, M. E., Stevens, C. V., et al. (2003). Chitosan as antimicrobial agent: Applications and mode of action. Biomacromolecules, 4(6), 14571465.CrossRefGoogle ScholarPubMed
Rautureau, M., Gomes, C.S.F., Liewig, N., & Katouzian-Safadi, M. (2010.). Argiles et Santé: Propriétés et Thérapies. Édition Médicales Internationale, Lavoisier, 184 pp.Google Scholar
Rautureau, M., Gomes, C.S.F., Liewig, N., & Katouzian-Safadi, M. (2017). Clays and Health: Properties and Therapeutic Uses. Springer International Publishing AG, Switzerland, ISBN 978-3319-42883-3.CrossRefGoogle Scholar
Rebelo, M., Viseras, C., López-Galindo, A., Rocha, F., & Ferreira da Silva, E. (2011). Rheological and thermal characterization of peloids made of selected Portuguese geological materials. Applied Clay Science, 52(3), 219227.CrossRefGoogle Scholar
Retsas, S. (2012). Medicinal use of earths and minerals from Hippocrates to Sir Hans Sloan and beyond. Vesalis, XVIII, 9398.Google Scholar
Retsas, S. (2016). Geotherapeutics: the medicinal use of earths, minerals and metals from antiquity to the twenty first century. In: C.J. Duffin, C. Gardner-Thorpe, & R.T.J. Moody (Eds.), Geology and Medicine: Historical Connections. Geological Society, London, Special Publications 452. https://doi.org/10.1144/SP452.5.CrossRefGoogle Scholar
Roques, C. F. (2015). Mud-therapy: Data for clinical evidence. Balnea, 10, 5762.Google Scholar
Roselli, C., Desideri, D., Cantaluppi, C., Mattioli, M., Fasson, A., & Meli, M. A. (2015). Essential and toxic elements in clays for pharmaceutical and cosmetic uses. Journal of Toxicology and Environmental Health, Part A, 78, 19.CrossRefGoogle Scholar
Rovira, B., & Gaitán, F. (2010). Los bucaros: De las Índias para el mundo. Canto Rodado, 5, 3978.Google Scholar
Ruiz-Hitzky, E., Aranda, P., Darder, M., & Rytwo, G. (2010). Hybrid materials for Environmental and Biomedical Applications. Journal of Materials Chemistry, 20, 93069321.CrossRefGoogle Scholar
Ruiz-Hitzky, E., Darder, M., Alcântara, A., Wicklein, B., & Aranda, P. (2015). Recent Advances on Fibrous Clay-Based Nanocomposites. Advances in Polymer Science, 267, 3986.CrossRefGoogle Scholar
Ruiz-Hitzky, E., Darder, M., Alcântara, A.C.S., Wicklein, B., & Aranda, A.P. (2017). Functional Nanocomposites based on fibrous clays. RSC Smart Materials n° 22, Chapter 1, 153.Google Scholar
Sandri, G., Faccendini, A., Longo, M., Rossi, S., Bonferoni, M. C., Miele, D., Prina-Mello, A., Aguzzi, C., Viseras, C., & Ferrari, F. (2020). Halloysite and montmorillonite-loaded scaffolds as enhancers of chronic wound healing. Pharmaceutics, 12, 179. https://doi.org/10.3390/pharmaceutics12020179CrossRefGoogle ScholarPubMed
Santos, M. F., Oliveira, C. M., & Tachinski, C. T. (2011). Bactericidal properties of bentonite treated with Ag+ and acid. International Journal of Mineral Processing, 100, 5153.CrossRefGoogle Scholar
Scientific Committee on Consumers Products. (2012). The SCCS'S Notes of guidance for the testing of cosmetic substances and their safety evaluation, 8th revision. SCCS/1501/12.Google Scholar
Seim, G. L., Ahn, C. I., Bodis, M. S., Luwedde, F., Miller, D. D., Hillier, S., Tako, E., Glahn, R. P., & Young, S. L. (2013). Bioavailability of iron in geophagic earths and clay minerals, and their effect on dietary iron absorption using an in vitro digestion/Caco-2 cell model. Food & Function, 4, 1263. https://doi.org/10.1039/c3fo30380bCrossRefGoogle ScholarPubMed
Seim, G. L., Tako, E., Ahn, C., Glahn, R., & Young, S. L. (2016). A novel in vivo model for assessing the impact pf geophagic earth on iron status. Nutrients, 8, 362. https://doi.org/10.3390/nu8060362CrossRefGoogle Scholar
Seseña, N. (2009). El vicio del barro. Ed. El Viso, Madrid.Google Scholar
Shin, S. R., Jung, S. M., Khabiryhin, S. R., Jung, S. M., Zalabany, M., Kim, K., Nikkhah, M., Khabiry, M., Azize, M., Kong, J., Wan, K. T., Palacios, T., Dokmeci, M. R. X., & Khademhosseini, A. (2013). Carbon-nanotube embedded hydrogel sheets for engineering cardiac constructs and bioactuators. ACS Nano, 7, 23692380.CrossRefGoogle ScholarPubMed
Slamova, R., Trckova, M., Vondruskova, H., Zraly, Z., & Pavlik, I. (2011). Clay minerals in animal nutrition. Applied Clay Science, 51, 395398.CrossRefGoogle Scholar
Smith, A. H., Laird, C., Porter, K., & Bloch, M. (2013). Haemostatic dressings in prehospital care. Emergency Medicine Journal, 30, 784789.CrossRefGoogle ScholarPubMed
Solaini, L., Gardani, M., & Ragni, F. (2012). Geophagia: an extraordinary cause of perforation of the sigmoid colon. Surgery, 152, 136137. https://doi.org/10.1016/j.surg.2011.06.033CrossRefGoogle ScholarPubMed
Stucki, J. W., & Kostka, J. E. (2006). Microbial reduction of iron in smectite. Comptes Rendus Geosci, 338, 468475.CrossRefGoogle Scholar
Suresh, R., Borkar, S., Sawant, V., Shende, V., & Dimble, S. (2010). Nanoclay drug delivery system. International Journal of Pharmaceutical Sciences and Nanotechnology, 3, 901905.Google Scholar
Tan, J., Zhu, W., Wang, W., Li, R., Hou, S., Wang, D., & Yang, L. (2002). Selenium in soil and endemic diseases in China. Science of the Total Environment, 284, 227235.CrossRefGoogle ScholarPubMed
Tateo, F., & Summa, V. (2007). Element mobility in clays for healing use. Applied Clay Science, 36, 6476.CrossRefGoogle Scholar
Tateo, F., Agnini, C., Carraro, A., Gianossi, M.L., Margiotta, S., Medici, L., Finizio, F.E., Summa, V. (2010). Short-term and long-term maturation of different clays for pelotherapy in an alkaline-sulphate mineral water (Rapolla, Italy). Applied Clay Science, 50, 503511.CrossRefGoogle Scholar
Tolomio, C., De Appolonia, F., Moro, I., & Berrini, C. C. (2004). Thermophyillic microalgae growth on different substrates and at different temperatures in experimental tanks in Abano Terme (Italy). Algological Studies, 111, 145157.Google Scholar
Tomás, H., Alves, C. S., & Rodrigues, J. (2018). Laponite®: A key nanoplatform for biomedical applications? Nanomedicine. Nanotechnology, Biology and Medicine, 14(7), 24072420.CrossRefGoogle Scholar
Tsegay, G., Tamiru, A., Amberbir, T., Davey, G., & Deribe, K. (2016). Willingness to pay for footwear, and associated factors related to podoconiosis in Northern Ethiopia. International Health, 345353.CrossRefGoogle Scholar
Vasconcellos, C. M. (1905). Algumas palavras a respeito de púcaros de Portugal. Bulletin Hispanique, tome, 7(2), 140196.CrossRefGoogle Scholar
Veniale, F. (1996). Argille Curative: Anteffati, Fatti e Misfatti. In: F. Veniale (Ed.), Atti Convegno «Argille Curative», Sálice Terme/PV, (pp. 111). Associazione Medica Italiana di Idroclimatologia, Talassologia e Terapia Física (AMIITTE). and Gruppo Italiano AIPEA (Association Internationale pour L'Étude des Argiles).Google Scholar
Veniale, F. (1998). Applicazioni e utilizzazioni medico-sanitarie di materiali argillosi (naturali e modificati). Corso di Specializzazione, Gruppo Italiano AIPEA, 140.Google Scholar
Veniale, F., Barberis, E., Carcangiu, G., Morandi, N., Setti, M., Tamanini, M., & Tessier, D. (2004). Formulation of muds for pelotherapy: effects of ‘maturation’ by different mineral waters. Applied Clay Science, 25, 135148.CrossRefGoogle Scholar
Veniale, F., Bettero, A., Jobstraibizer, P., & Setti, M. (2007). Thermal muds: Perspectives of Innovations. Applied Clay Science, 36, 141147.CrossRefGoogle Scholar
Verma, A., & Riaz, U. (2018). Sonolytically intercalated poly (anisidine-co-toluidine)/bentonite nanocomposites: pH responsive drug release characteristics. Journal of Drug Delivery Science and Technology, 48, 4958.CrossRefGoogle Scholar
Viseras, C., & López-Galindo, A. (1999). Pharmaceutical applications of some Spanish Clays (sepiolite, palygorskite, bentonite): Some preformulation studies. Applied Clay Science, 14, 6982.CrossRefGoogle Scholar
Viseras, C., & López-Galindo, A. (2000). Characteristics of pharmaceutical grade phyllosilicate powders. Pharmaceutical Development and Technology, 5(1), 4752.CrossRefGoogle ScholarPubMed
Viseras, C., Ferrari, F., Yebra, A., Rossi, S., Caramella, C., & López-Galindo, A. (2001). Disintegrant efficiency of special phyllosilicates: smectite, palygorskite, sepiolite. STP Pharmaceutical Science, 11(2), 137143.Google Scholar
Viseras, C., Cultrone, G., Cerezo, P., Aguzzi, P., Baschini, M. T., Valles, J., & López-Galindo, A. (2006). Characterization of northern Patagonian bentonite for pharmaceutical uses. Applied Clay Science, 31, 272281.Google Scholar
Viseras, C., Aguzzi, C., Cerezo, P., & Lopez-Galindo, A. (2007). Uses of clay minerals in semisolid health care and therapeutic products. Applied Clay Science, 36, 3750.CrossRefGoogle Scholar
Viseras, C., Carazo, E., Borrego-Sánchez, A., Garcia-Villén, F., Sánchez-Espejo, R., Cerezo, P., & Aguzzi, C. (2019). Clay minerals in skin drug delivery. Clays and Clay Minerals. https://doi.org/10.1007/s42860-018-000cCrossRefGoogle Scholar
Wang, X., Dong, H., Zeng, Q., Xia, Q., Zhang, L., & Zhou, Z. (2017). Reduced iron-containing clay minerals as antibacterial agents. Environmental Science & Technology, 51, 24012408.Google ScholarPubMed
Williams, L. B. (2017). Geomimicry: Harnessing the antibacterial action of clays. Clay Minerals, 52, 124.CrossRefGoogle Scholar
Williams, L. B. (2019). Natural antibacterial clays. Historical uses and modern advances. Clays and Clay Minerals, 67, 724.CrossRefGoogle Scholar
Williams, L. B., & Haydel, S. E. (2010). Evaluation of the medicinal use of clay minerals as antibacterial agents. International Geology Review, 52, 745770.CrossRefGoogle ScholarPubMed
Williams, L. B., Holland, M., Eberl, D. D., Brunet, T., & de Coursou, L. B. (2004). Killer Clays! Natural antibacterial clay minerals. Mineralogical Society Bulletin, 38.Google Scholar
Williams, L. B., Haydel, S. E., Giese, R., & Eberl, D. D. (2008). Chemical and mineralogical characteristics of French Green Clays used for healing. Clays and Clay Minerals, 56, 437452.CrossRefGoogle ScholarPubMed
Williams, L. B., Haydel, S. E., & Ferrell, R. (2009). Bentonite, Bandaids and Borborygmi. Elements, 5, 99104.CrossRefGoogle ScholarPubMed
Wilson, M. J. (2003). Clay mineralogical and related characteristics of geophagic materials. Journal of Chemical Ecology, 29, 15251547.CrossRefGoogle ScholarPubMed
Wu, C-H., Gaharwarm, A.K., Schexnailder, P.J., & Schmidt, G. (2010). Development of biomedical polymer-silicate nanocomposites: A materials science perspective. Materials, 3, 29863005. https://doi.org/10.3390/ma3052986.CrossRefGoogle Scholar
Xavier, J. R., Thakur, T., Prachi Desai, P., Jaiswal, M., Sears, N., Cosgriff-Hernandez, E., Kaunas, R., & Gaharwar, A. K. (2015). Bioactive nanoengineered hydrogels 2 for bone tissue engineering: A 3 growth-factor-free approach. ACS Nano. https://doi.org/10.1021/nn507488sCrossRefGoogle Scholar
Yapar, S., Ateş, M., & Özdemir, G. (2017). Preparation and characterization of sodium lauroyl sarcosinate adsorbed on cetylpyridinium-montmorillonite as a possible antibacterial agent. Applied Clay Science, 150, 1622.CrossRefGoogle Scholar
Yariv, S., & Cross, H. (2002). Organo-Clay Complexes and Interactions. Marcel Dekker, Inc.Google Scholar
Young, S. L. (2010). Pica in pregnancy: new ideas about an old condition. Annual Review of Nutrition, 30, 403422.CrossRefGoogle ScholarPubMed
Young, S. L., & Miller, J. D. (2019). Medicine beneath your feet: a biocultural examination of the risks and benefits of geophagy. Clays and Clay Minerals, 67, 8190.CrossRefGoogle Scholar
Young, S. L., Wilson, M. J., Miller, D., & Hillier, S. (2008). Toward a comprehensive approach to the collection and analysis of pica substances, with emphasis on geophagic materials. PLoS One, 3, e3147.CrossRefGoogle Scholar
Yuen, J. W. M., Chung, T. W. K., & Loke, A. Y. (2015). Methicillin-resistantStaphylococcus aureus (MRSA). contamination in bedside surfaces of a hospital ward and the potential effectiveness of enhanced disinfection with an antimicrobial polymer surfactant. International Journal of Environmental Research amd. Public Health, 12, 3026.CrossRefGoogle Scholar