Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-23T00:06:16.888Z Has data issue: false hasContentIssue false

Characteristics and Formation Pathways of Iron- and Magnesium-Silicate-Hydrates and Smectites Under Natural Alkaline Conditions

Published online by Cambridge University Press:  01 January 2024

Misato Shimbashi*
Affiliation:
Geology and Geotechnical Engineering Division, Central Research Institute of Electric Power Industry, Abiko, Chiba 270-1194, Japan Division of Sustainable Resources Engineering, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
Shingo Yokoyama
Affiliation:
Geology and Geotechnical Engineering Division, Central Research Institute of Electric Power Industry, Abiko, Chiba 270-1194, Japan
Ryosuke Kikuchi
Affiliation:
Division of Sustainable Resources Engineering, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
Tsubasa Otake
Affiliation:
Division of Sustainable Resources Engineering, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
Tsutomu Sato
Affiliation:
Division of Sustainable Resources Engineering, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan

Abstract

Understanding the behavior of secondary minerals under alkaline conditions is important for predicting the potential alteration of the constituent minerals in radioactive-waste disposal facilities. A previous study reported the formation of uncommon Fe- and Mg-bearing clays under natural alkaline conditions in the Philippines; these were referred to as iron-magnesium-silicate-hydrates (F-M-S-H) and nontronite-like minerals. The current study aimed to investigate the structural and chemical characteristics and to understand the formation pathways of these clays by performing a detailed characterization. F-M-S-H comprised tetrahedral–octahedral–tetrahedral (TOT) layers, imperfect interlayer hydroxide sheets, and interlayer Ca ions. The systematic changes in the characteristics of F-M-S-H at different sampling depths, such as the gradual decrease of the interlayer hydroxide sheets to form smectitic domains, were caused by the differing interaction periods between each sediment at different sampling depths and alkaline seepage. Furthermore, F-M-S-H was ferrous in form prior to oxidation. In contrast, a nontronite-like mineral comprised nontronite and part of an interlayer hydroxide sheet. This mineral was inferred to be formed under chemically different conditions from F-M-S-H, and probably formed in the presence of aqueous Fe3+ and Mg ions.

Type
Original Paper
Copyright
Copyright © The Author(s), under exclusive licence to The Clay Minerals Society 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akbulut, A., & Kadir, S. (2003). The geology and origin of sepiolite, palygorskite and saponite in Neogene lacustrine sediments of the Serinhisar-Acipayam basin, De$nDizli, SW Turkey. Clays and Clay Minerals, 51, 279292.CrossRefGoogle Scholar
Aurelio, M. A., Forbes, M. T., Taguibao, K. J. L., Savella, R. B., Bacud, J. A., Franke, D., Pubellier, M., Savva, D., Meresse, F., Steuer, S., & Carranza, C. D. (2014). Middle to Late Cenozoic tectonic events in south and central Palawan (Philippines) and their implications to the evolution of the south-eastern margin of South China Sea: Evidence from onshore structural and offshore seismic data. Marine and Petroleum Geology, 58, 658673.CrossRefGoogle Scholar
Bain, D. C., & Russell, J. D. (1981). Swelling minerals in a basalt and its weathering products from Morvern, Scotland: II. Swelling chlorite. Clay Minerals, 16, 203212.CrossRefGoogle Scholar
Barnes, I., O'Neil, J. R., & Trescases, J. J. (1978). Present day serpentinization in New Caledonia, Oman and Yugoslavia. Geochimica et Cosmochimica Acta, 42(1), 144145.CrossRefGoogle Scholar
Baron, F., Petit, S., Pentrák, M., Decarreau, A., & Stucki, J. W. (2017). Revisiting the nontronite Mössbauer spectra. American Mineralogist, 102(7), 15011515.CrossRefGoogle Scholar
Baron, F., Petit, S., Tertre, E., & Decarreau, A. (2016). Influence of aqueous Si and Fe speciation on tetrahedral Fe (III) substitutions in nontronites: A clay synthesis approach. Clays and Clay Minerals, 64(3), 230244.CrossRefGoogle Scholar
Benhammou, A., Tanouti, B., Nibou, L., Yaacoubi, A., & Bonnet, J. P. (2009). Mineralogical and physicochemical investigation of Mg-smectite from Kbel Ghassoul, Morocco. Clays and Clay Minerals, 57, 264270.CrossRefGoogle Scholar
Brindley, G. W., Bish, D. L., & Wan, H. M. (1979). Compositions, structures, and properties of nickel-containing minerals in the kerolite-pimelite series. American Mineralogist, 64, 615625.Google Scholar
Craw, D., Landis, C. A., & Kelsey, P. I. (1987). Authigenic chrysotile formation in the matrix of Quaternary debris flows, northern Southland, New Zealand. Clays and Clay Minerals, 35, 4352.CrossRefGoogle Scholar
Czaja, M., Kadziołka-Gaweł, M., Lisiecki, R., Bodył-Gajowska, S., & Mazurak, Z. (2014). Luminescence and other spectroscopic properties of purple and green Cr-clinochlore. Physics and Chemistry of Minerals, 41, 115126.CrossRefGoogle Scholar
Dauzeres, A., Achiedo, G., Nied, D., Bernard, E., Alahrache, S., & Lothenbach, B. (2016). Magnesium perturbation in low-pH concretes placed in clayey environment—solid characterizations and modeling. Cement and Concrete Research, 79, 137150.CrossRefGoogle Scholar
Decarreau, A., & Bonnin, D. (1986). Synthesis and crystallogenesis at low temperature of Fe (III)-smectites by evolution of coprecipitated gels: experiments in partially reducing conditions. Clay Minerals, 21(5), 861877.CrossRefGoogle Scholar
Decarreau, A., Bonnin, D., Badaut-Trauth, D., Couty, R., & Kaiser, P. (1987). Synthesis and crystallogenesis of ferric smectite by evolution of Si-Fe coprecipitates in oxidizing conditions. Clay Minerals, 22(2), 207223.CrossRefGoogle Scholar
Decarreau, A., Petit, S., Martin, F., Farges, F., Vieillard, P., & Joussein, E. (2008). Hydrothermal synthesis, between 75 and 150°C, of high-charge, ferric nontronites. Clays and Clay Minerals, 56(3), 322337.CrossRefGoogle Scholar
Dyar, M. D., Agresti, D. G., Schaefer, M. W., Grant, C. A., & Sklute, E. C. (2006). Mössbauer spectroscopy of earth and planetary materials. Annual Reviews of Earth and Planetary Science, 34, 83125.CrossRefGoogle Scholar
Farmer, V. C. (1958). The infra-red spectra of talc, saponite, and hectorite. Mineralogical Magazine, 31, 829845.CrossRefGoogle Scholar
Fernández, R., González-Santamaría, D., Angulo, M., Torres, E., Ruiz, A. I., Turrero, M. J., & Cuevas, J. (2018). Geochemical conditions for the formation of Mg silicates phases in bentonite and implications for radioactive waste disposal. Applied Geochemistry, 93, 19.CrossRefGoogle Scholar
Fujii, N., Yamakawa, M., Shikazono, N., & Sato, T. (2014). Geochemical and Mineralogical Characterizations of Bentonite interacted with Alkaline Fluids generating in Zambales Ophiolite, Northwestern Luzons, Philippines. The Geological Society of Japan, 120, 361375 (in Japanese with English abstract).Google Scholar
Furquim, S. A. C., Barbiéro, L., Graham, R. C., de Queiroz Neto, J. P., Ferreira, R. P. D., & Furian, S. (2010). Neoformation of micas in soils surrounding an alkaline-saline lake of Pantanal wetland, Brazil. Geoderma, 158, 331342.CrossRefGoogle Scholar
Gainey, S. R., Hausrath, E. M., Adcock, C. T., Tschauner, O., Hurowitz, J. A., Ehlmann, B. L., Xiao, Y., & Bartlett, C. L. (2017). Clay mineral formation under oxidized conditions and implications for paleoenvironments and organic preservation on Mars. Nature communications, 8(1), 17.CrossRefGoogle ScholarPubMed
García Calvo, J. L., Hidalgo, A., Alonso, C., & Fernández Luco, L. (2010). Development of low-pH cementitious materials for HLRW repositories. Resistance against ground waters aggression. Cement and Concrete Research, 40, 12901297.CrossRefGoogle Scholar
Grauby, O., Petit, S., Decarreau, A., & Baronnet, A. (1994). The nontronite-saponite series: an experimental approach. European Journal of Mineralogy, 6, 99112.CrossRefGoogle Scholar
Johnston, J. H., & Cardile, C. M. (1985). Iron sites in nontronite and the effect of interlayer cations from Mössbauer spectra. Clays and Clay Minerals, 33, 2130.CrossRefGoogle Scholar
Kaufhold, S., Dohrmann, R., & Weber, C. (2020). Evolution of the pH value at the vicinity of the iron-bentonite interface. Applied Clay Science, 201, 105929.CrossRefGoogle Scholar
Kodama, H., De Kimpe, C. R., & Dejou, J. (1988). Ferrian saponite in a gabbro saprolite at Mont Megantic, Quebec. Clays and Clay Minerals, 36, 102110.CrossRefGoogle Scholar
Kodama, H., Longworth, G., & Townsend, M. G. (1982). A Mössbauer investigation of some chlorites and their oxidation products. The Canadian Mineralogist, 20, 585592.Google Scholar
Kohyama, N., Shimoda, S., & Sudo, T. (1973). Iron-rich saponite (ferrous and ferric forms). Clays and Clay Minerals, 21, 229237.CrossRefGoogle Scholar
Lagaly, G., & Weiss, A. (1969). Determination of the layer charge in mica-type layer silicates. Pp. 6180 in: Proceedings of the International Clay Conference, Tokyo, 1969, Volume 1 (Heller, L., editor). Israel University Press.Google Scholar
Lerouge, C., Gaboreau, S., Grangeon, S., Claret, F., Warmont, F., Jenni, A., ... Mäder, U. (2017). In situ interactions between Opalinus clay and low alkali concrete. Physics and Chemistry of the Earth, Parts A/B/C, 99, 321.CrossRefGoogle Scholar
Madejová, J. (2003). FTIR techniques in clay mineral studies. Vibrational Spectroscopy, 31, 110.CrossRefGoogle Scholar
Madejová, J., Balan, E., & Petit, S. (2011). Application of vibrational spectroscopy to the characterization of phyllosilicates and other industrial minerals. EMU Notes in Mineralogy, 9, 171226.Google Scholar
Meunier, A. (2007). Soil hydroxy-interlayered minerals: a re-interpretation of their crystallochemical properties. Clays and Clay Minerals, 55(4), 380388.CrossRefGoogle Scholar
Milodowski, A. E., Norris, S., & Alexander, W. R. (2016). Minimal alteration of montmorillonite following long-term interaction with natural alkaline groundwater: Implications for geological disposal of radioactive waste. Applied Geochemistry, 66, 184197.CrossRefGoogle Scholar
Nishiki, Y., Sato, T., Katoh, T., Otake, T., & Kikuchi, R. (2020). Precipitation of magnesium silicate hydrates in natural alkaline surface environments. Clay Science, 24, 113.Google Scholar
Olis, A. C., Malla, P. B., & Douglas, L. A. (1990). The rapid estimation of the layer charges of 2: 1 expanding clays from a single alkylammonium ion expansion. Clay Minerals, 25, 3950.CrossRefGoogle Scholar
Petit, S., Baron, F., & Decarreau, A. (2017). Synthesis of nontronite and other Fe-rich smectites: a critical review. Clay Minerals, 52, 469483.CrossRefGoogle Scholar
Petit, S., Caillaud, J., Righi, D., Madejová, J., Elsass, F., & Köster, H. M. (2002). Characterization and crystal chemistry of an Fe-rich montmorillonite from Ölberg, Germany. Clay Minerals, 37(2), 283297.CrossRefGoogle Scholar
Petit, S., Decarreau, A., Gates, W., Andrieux, P., & Grauby, O. (2015). Hydrothermal synthesis of dioctahedral smectites: The Al-Fe3+ chemical series. Part II: Crystal-chemistry. Applied Clay Science, 104, 96105.CrossRefGoogle Scholar
Rich, C. I., & Bonnet, J. A. (1975). Swelling chlorite in a soil of the Dominican Republic. Clays and Clay Minerals, 23(2), 97102.CrossRefGoogle Scholar
RWMC. (2016). Advancement of processing and disposal technique for the geological disposal of TRU waste (FY2015). https://www.enecho.meti.go.jp/category/electricity_and_gas/nuclear/rw/library/library06.html. Accessed 20 Apr 2022 (in Japanese).Google Scholar
RWMC. (2017). Advancement of processing and disposal technique for the geological disposal of TRU waste (FY2016). https://www.enecho.meti.go.jp/category/electricity_and_gas/nuclear/rw/library/library06.html. Accessed 20 Apr 2022 (in Japanese).Google Scholar
RWMC. (2018). Advancement of processing and disposal technique for the geological disposal of TRU waste (FY2017). https://www.enecho.meti.go.jp/category/electricity_and_gas/nuclear/rw/library/library06.html. Accessed 20 Apr 2022 (in Japanese).Google Scholar
Sellin, P., & Leupin, O. X. (2014). The use of clay as an engineered barrier in radioactive-waste management – a review. Clays and Clay Minerals, 61, 447498.Google Scholar
Shimbashi, M., Sato, T., Yamakawa, M., Fujii, N., & Otake, T. (2018). Formation of Fe-and Mg-rich smectite under hyperalkaline conditions at Narra in Palawan, the Philippines. Minerals, 8(4), 155.CrossRefGoogle Scholar
Shimbashi, M., Yokoyama, S., Watanabe, Y., Sato, T., Otake, T., Kikuchi, R., Yamakawa, M., & Fujii, N. (2020). Formation of natural silicate hydrates by the interaction of alkaline seepage and sediments derived from serpentinized ultramafic rocks at Narra, Palawan, the Philippines. Minerals, 10, 719.CrossRefGoogle Scholar
Shimoda, S. (1971). Mineralogical studies of a species of stevensite from the Obori mine, Yamagata Prefecture, Japan. Clay Minerals, 9, 185192.CrossRefGoogle Scholar
Shimoda, S. (1974). 2,3 Properties of so-called swelling chlorite. Journal of the Clay Science Society of Japan, 14, 7989 (in Japanese with English abstract).Google Scholar
Stephen, I., & MacEwan, D. M. C. (1950). Swelling chlorite. Geotechnique, 2, 8283.CrossRefGoogle Scholar
Treiman, A. H., Morris, R. V., Agresti, D. G., Graff, T. G., Achilles, C. N., Rampe, E. B., Bristow, T. F., Ming, D. W., Blake, D. F., Vaniman, D. T., Bish, D. L., Chipera, S. J., Morrison, S. M., & Downs, R. T. (2014). Ferrian saponite from the Santa Monica Mountains (California, U.S.A., Earth): Characterization as an analog for clay minerals on Mars with application to Yellowknife Bay in Gale Crater. American Mineralogist, 99, 22342250.CrossRefGoogle Scholar
Wilson, J., Cressey, G., Cressey, B., Cuadros, J., Ragnarsdottir, K. V., Savage, D., & Shibata, M. (2006). The effect of iron on montmorillonite stability. (II) Experimental investigation. Geochimica et Cosmochimica Acta, 70(2), 323336.CrossRefGoogle Scholar
Yariv, S., & Heller-Kallai, L. (1975). The relationship between the IR spectra of serpentines and their structures. Clays and Clay Minerals, 23, 145152.CrossRefGoogle Scholar
Yokoyama, S., Shimbashi, M., Minato, D., Watanabe, Y., Jenni, A., & Mäder, U. (2021). Alteration of bentonite reacted with cementitious materials for 5 and 10 years in the Mont Terri Rock Laboratory (CI Experiment). Minerals, 11(3), 251.CrossRefGoogle Scholar
Yoshida, H., Kitayama, K., Sato, T., & Kobayashi, Y. (2010). Natural analogues / Supporting geological disposal: Gaining evidence of predictability on 100 ka timescales. The Atomic Energy Society of Japan: ATOMO, 52(8), 473477 (in Japanese).Google Scholar
Zazzi, Å., Hirsch, T. K., Leonova, E., Kaikkonen, A., Grins, J., Annersten, H., & Edén, M. (2006). Structural investigations of natural and synthetic chlorite minerals by x-ray diffraction, Mössbauer spectroscopy and solid-state nuclear magnetic resonance. Clays and Clay Minerals, 54, 252265.CrossRefGoogle Scholar
Zviagina, B. B., McCarty, D. K., Środoń, J., & Drits, V. A. (2004). Interpretation of infrared spectra of dioctahedral smectites in the region of OH-stretching vibrations. Clays and Clay Minerals, 52(4), 399410.CrossRefGoogle Scholar