Hostname: page-component-84b7d79bbc-g78kv Total loading time: 0 Render date: 2024-07-31T08:55:52.820Z Has data issue: false hasContentIssue false

Dissolution of Iron Oxides and Oxyhydroxides in Hydrochloric and Perchloric Acids

Published online by Cambridge University Press:  01 July 2024

P. S. Sidhu*
Affiliation:
Department of Soil Science and Plant Nutrition, University of Western Australia, Nedlands, Western Australia, 6009, Australia
R. J. Gilkes
Affiliation:
Department of Soil Science and Plant Nutrition, University of Western Australia, Nedlands, Western Australia, 6009, Australia
R. M. Cornell*
Affiliation:
Department of Soil Science and Plant Nutrition, University of Western Australia, Nedlands, Western Australia, 6009, Australia
A. M. Posner
Affiliation:
Department of Soil Science and Plant Nutrition, University of Western Australia, Nedlands, Western Australia, 6009, Australia
J. P. Quirk*
Affiliation:
Department of Soil Science and Plant Nutrition, University of Western Australia, Nedlands, Western Australia, 6009, Australia
*
1Present address: Department of Soils, Punjab Agricultural University, 141004, Ludhiana, India.
2Present address: Chemistry Department, University of Berne, Berne, Switzerland.
3Present address: Waite Agricultural Research Institute, University of Adelaide, Glen Osmond, South Australia, 5064, Australia.

Abstract

The dissolution of synthetic magnetite, maghemite, hematite, goethite, lepidocrocite, and akaganeite was faster in HCl than in HClO4. In the presence of H+, the Cl ion increased the dissolution rate, but the ClO4 ion had no effect, suggesting that the formation of Fe-Cl surface complexes assists dissolution. The effect of temperature on the initial dissolution rate can be described by the Arrhenius equation, with dissolution rates in the order: lepidocrocite > magnetite > akaganeite > maghemite > hematite > goethite. Activation energies and frequency factors for these minerals are 20.0, 19.0, 16.0, 20.3, 20.9, 22.5 kcal/mole and 5.8 × 1011, 1.8 × 1010, 7.4 × 107, 5.1 × 1010, 2.1 × 1010, 3.0 × 1011 g Fe dissolved/m2/hr, respectively. The complete dissolution of magnetite, maghemite, hematite, and goethite is well described by the cube-root law, whereas that of lepidocrocite is not.

Резюме

Резюме

Растворение синтетического магнетита, маггемита, гематита, гетита, лепидокрокита и акаганеита происходило быстрее в НСl, чем в НСlO4. В присутствии Н+, ион Сl увеличивал скорость реакции, а ион СlO4 не имел никакого эффекта. Это указывает на то, что формирование поверхностных комплексов Fe-Cl содействует растворению. Эффект температуры на начальную скорость реакции может быть описан формулой Аррениуса, при порядке скоростей растворения: лепидокрокит > магнетит > акаганеит > маггемит > гетит. Энергии активации и факторы частот для этих минералов были соответственно: 20,0, 19,0, 16,0, 20,3, 20,9, 22,5 ккал/моль и 5,8 × 1011, 1,8 × 1010, 7,4 × 107, 5,1 × 1010, 2,1 × 1010, 3,0 × 1011 грамма Fe растворенного/м2/час. Полное растворение магнетита, маггемита, гематита и гетита хорошо описывается законом кубического корня, однако растворение лепидокрокита не совпадает с этим законом. [Е.С.]

Resümee

Resümee

Synthetischer Magnetit, Maghemit, Haematit, Goethit, Lepidokrokit, und Akaganeit löste sich in HCl schneller als in HClO4. In Gegenwart von H+ vergrößerte Cl die Löungsgeschwindigkeit, während ClO4 ohne Einfluß war. Dies deutet darauf hin, daß die Bildung von Fe-Cl-Oberfläichenkomplexen die Auflösung fördert. Der Temperatureffekt auf die anffängliche Lösungsgescbwindigkeiten kann durch die Arrhenius-Gleichung beschrieben werden, wobei sich für die Lösungsgeschwindigkeiten folgende Reihenfolge ergibt: Lepidokrokit > Magnetit > Akaganeit > Maghemit > Haematit > Goethit. Die Aktivierungsenergien bzw. Häufigkeitsfaktoren dieser Minerale sind 20,0, 19,0, 16,0, 20,3, 20,9, 22,5 kcal/Mol bzw 5.8 × 1011, 1,8 × 1010, 7,4 × 107, 5,1 × 1010, 2,1 × 1010, 3,0 × 1011 g Fe gelöst/m2/hr. Die vollständige Auflösung von Magnetit, Maghemit, Haematit, und Goethit wird durch das Kubikwurzelgesetz beschrieben, während es für die von Lepidokrokit nicht gilt. [U.W.]

Résumé

Résumé

La dissolution de magnétite, maghémite, hématite, goethite, lépidocrocite, et d'akaganéite synthétiques était plus rapide dans HCl que dans HClO4. En présence d'H+, l'ion Cl a augmenté l'allure de dissolution, mais l'ion ClO4 n'avait aucun effet, suggérant que la formation de complexes Fe-Cl de surface aide la dissolution. L'effet de la température sur l'allure de dissolution peut être décrite par l’équation d'Arrhenius avec les allures de dissolution dans l'ordre suivant: lépidocrocite > magnétite > akaganéite > maghémite > hématite > goethite. Les énergies d'activation et les facteurs de fréquence pour ces minéraux sont 20,0, 19,0, 16,0, 20,3, 20;9, 22,5, kcal/mole et 5,8 × 1011, 1,8 × 1010, 7,4 × l07, 5,1 × 1010, 2,1 × 1010, 3,0 × 1011 g Fe dissolu/m2/hr, respectivement. La dissolution complète de magnétite, maghémite, hématite, et de goethite est bien décrite par la loi de racine cubique, tandis que celle de la lépidocrocite ne l'est pas. [D.J.]

Type
Research Article
Copyright
Copyright © 1981, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Deceased August 1980.

References

Atkinson, R. J. Posner, A. M. and Quirk, J. P., (1968) Crystal nucleation in Fe(III) solutions and hydroxide gels J. Inorg. Nucl. Chem. 30 23712381.CrossRefGoogle Scholar
Atkinson, R. J. Posner, A. M. and Quirk, J. P., (1977) Crystal nucleation and growth in hydrolyzing iron(III) chloride solutions Clays & Clay Minerals 25 4956.CrossRefGoogle Scholar
Cornell, R. M. Posner, A. M. and Quirk, J. P., (1974) Crystal morphology and the dissolution of goethite J. Inorg. Nucl. Chem. 36 19371946.CrossRefGoogle Scholar
Cornell, R. M. Posner, A. M. and Quirk, J. P., (1975) The complete dissolution of goethite J. Appl. Chem. Biotech. 25 701706.CrossRefGoogle Scholar
Cornell, R. M. Posner, A. M. and Quirk, J. P., (1976) Kinetics and mechanisms of the acid dissolution of goethite (α-FeOOH) J. Inorg. Nucl. Chem. 38 563567.CrossRefGoogle Scholar
Deer, W. A. Howie, R. A. and Zussman, J., (1962) Rock-Forming Minerals, Vol. 5. Non-Silicates London Longmans.Google Scholar
Fischer, W. R., Schlichting, E. and Schwertmann, V., (1973) Die Wirkung von zweiwertigen Eisen auf Auflosung und Umwandlung von Eisen(III)-hydroxiden Pseudogley and Gley: Genesis and Use of Hydromorphic Soils Weinheim/Bergstraase, Germany Verlag Chemie 3744.Google Scholar
Glasstone, S. Laidler, K. J. and Eyring, H., (1941) The Theory of Rate Processes New York McGraw Hill.Google Scholar
Hixson, A. W. and Crowell, J. H., (1931) Dependence of reaction velocity upon surface agitation Ind. Eng. Chem. 23 923981.CrossRefGoogle Scholar
Klug, H. P. and Alexander, L. E., (1954) X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials New York Wiley.Google Scholar
Krestov, G. A. Shormanov, V. A. and Pimenova, N. I., (1973) Kinetic study of the dissolution of α-iron(III) oxide in aqueous solutions of inorganic acids Izv. Vyssh. Ucheb. Zaved. Khim. Khim. Tekhnol. 16 377381.Google Scholar
Kullerud, G. Donnay, G. and Donnay, J. D. H., (1969) Omission solid solution in magnetite: Kenotetrahedral magnetite Z. Kristallog. 128 117.CrossRefGoogle Scholar
Mackay, A. L., (1962) β-Ferric oxyhydroxide-akaganeite Mineral Mag. 33 270280.Google Scholar
McKeague, J. A. Brydon, J. E. and Miles, N. M., (1971) Differentiation of forms of extractable iron and aluminum in soils Soil Sci. Soc. Amer. Proc. 35 3338.CrossRefGoogle Scholar
Mitchell, B. D. Farmer, V. C. and McHardy, W. J., (1964) Amorphous inorganic materials in soils Adv. Agron. 16 327383.CrossRefGoogle Scholar
Murphy, P. J. Posner, A. M. and Quirk, J. P., (1976) Characterization of partially neutralized ferric Perchlorate solutions J. Colloid Interface Sci. 56 298311.CrossRefGoogle Scholar
Schwertmann, V. Taylor, R. M., Dixon, J. B. and Weed, S. B., (1977) Iron oxides Minerals in Soil Environments Madison, Wisconsin Soil Science Society of America 145176.Google Scholar
Sidhu, P. S. Gilkes, R. J. and Posner, A. M., (1978) The synthesis and some properties of Co, Ni, Zn, Cu, Mn, and Cd substituted magnetites J. Inorg. Nucl. Chem. 40 429435.CrossRefGoogle Scholar
Vogel, A. I., (1961) A Textbook of Quantitative Inorganic Analyses London Longmans.Google Scholar
Watson, J. H. L. Cardell, R. R. and Heller, W., (1962) The internal structure of colloidal crystals of β-FeOOH and remarks on their assemblies in Schiller layer J. Phys. Chem. 66 17571763.CrossRefGoogle Scholar