Hostname: page-component-7479d7b7d-wxhwt Total loading time: 0 Render date: 2024-07-11T05:22:26.524Z Has data issue: false hasContentIssue false

Effects of Acidification on the Chemical Composition and Layer Charge of Smectite from Calcareous Till

Published online by Cambridge University Press:  28 February 2024

C. James Warren
Affiliation:
Department of Soil Science, University of Alberta, Edmonton, Alberta, Canada T6G 2E3
Marvin J. Dudas
Affiliation:
Department of Soil Science, University of Alberta, Edmonton, Alberta, Canada T6G 2E3
Salim A. Abboud
Affiliation:
Environmental Research and Engineering Department, Alberta Research Council, P.O. Box 8330, Postal Station F, Edmonton, Alberta, Canada T6H 5X2

Abstract

The objectives of the study were to determine the chemical composition and layer charge of smectite found in calcareous till of the Interior Plains region of western Canada and to examine the effects of acidification on alteration of the smectite. Samples of acidified and non-acidified (calcareous) late-Wisconsin till were obtained from four soil pits located immediately adjacent to an elemental sulfur block located in southern Alberta. Samples of the surface material (0–10 cm depth) had been subjected to extreme acidity for 25 years due to the oxidation of elemental sulfur and displayed pH values of about 2.0. Samples of the till obtained at depth (65–75 cm) remained calcareous with pH values between 7.3 and 7.6. A combination of analytical methods was used to determine the chemical composition of the smectite found in the samples. The layer charge of the smectite was determined independently using X-ray diffraction data for n-alkylammoniurn saturated specimens. Smectite found in the non-acidified calcareous material was characteristic of montmorillonite with a low content of Fe and very little substitution of Al for Si in the tetrahedral sheet. The smectite had a structural formula of M+0.40(Si3.96Al0.04)(Al1.56Fe3+0.10Mg0.33)O10(OH)2, which compared well with a mean value for layer charge of 0.399 mol(−)/O10(OH)2 determined using X-ray diffraction data for n-alkylammonium treated specimens. Smectite remaining in the till material subjected to extreme acidity underwent incongruent dissolution with a net loss of layer charge and preferential loss of octahedral Mg.

Type
Research Article
Copyright
Copyright © 1992, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bailey, S. W., 1972 Determination of chlorite compositions by X-ray spacings and intensities Clays & Clay Minerals 20 381388 10.1346/CCMN.1972.0200606.CrossRefGoogle Scholar
Bailey, S. W., 1988 Chlorites: Structures and crystal chemistry: in Hydrous phyllosilicates (exclusive of micas) Reviews in Mineralogy 19 347404.Google Scholar
Bailey, S. W., Alietti, A., Brindley, G. W., Formosa, M L L Jasmund, K., Konta, J., Mackenzie, R. C., Nagasawa, K., Rausell-Colom, R. A. and Zvyagin, B. B., 1980 Summary of recommendations of AIPEA nomenclature committee Clays & Clay Minerals 28 7378 10.1346/CCMN.1980.0280114.Google Scholar
Berry, R. and Jorgensen, P., 1969 Separation of illite and chlorite by electromagnetic techniques Clay Miner. 8 201212 10.1180/claymin.1969.008.2.08.CrossRefGoogle Scholar
Bodine, M. W., 1987 CLAYFORM: A FORTRAN 77 computer program apportioning the constituents in the chemical analysis of a clay or other silicate mineral into a structural formula Computers & Geosciences 13 7788 10.1016/0098-3004(87)90025-2.CrossRefGoogle Scholar
Bundy, L. G. and Bremner, J. M., 1972 A simple titrimetric method for determination of inorganic carbon in soils Soil Sci. Soc. Am. Proc. 36 273275 10.2136/sssaj1972.03615995003600020021x.CrossRefGoogle Scholar
Chittleborough, D. J. and Walker, P. H., 1988 Crystallinity of soil kaolinites in relation to clay particle-size and soil age J. Soil Sci. 39 8186 10.1111/j.1365-2389.1988.tb01196.x.CrossRefGoogle Scholar
Curtin, D. and Mermut, A. R., 1985 Nature and behavior of montmorillonite in an inland marine shale from East central Saskatchewan Soil Sci. Soc. Am. J. 49 250255 10.2136/sssaj1985.03615995004900010051x.CrossRefGoogle Scholar
Dudas, M. J. and Pawluk, S., 1982 Reevaluation of the occurrence of interstratified and other phyllosilicates in southern Alberta soils Can. J. Soil Sci. 62 6169 10.4141/cjss82-007.CrossRefGoogle Scholar
Foster, M. D., (1962) Interpretation of the composition and classification of chlorites: U.S. Geol. Survey. Prof. Paper 414–A.Google Scholar
Gast, R. G., Dixon, J. B. and Weed, S. B., 1977 Surface and Colloid Chemistry Minerals in Soil Environments 2773.Google Scholar
Genrich, D. A. and Bremner, J. W., 1972 A reevaluation of the ultrasonic vibration method of dispersing soils Soil Sci. Soc. Am. Proc. 36 944947 10.2136/sssaj1972.03615995003600060031x.CrossRefGoogle Scholar
Häusler, W. and Stanjek, H., 1988 A refined procedure for the determination of the layer charge with alkylammonium ions Clay Miner. 23 333337 10.1180/claymin.1988.023.3.11.CrossRefGoogle Scholar
Jackson, M. L., 1979 Soil Chemical Analysis—Advanced Course 2nd Edition.Google Scholar
Karathansis, A. D. and Hajek, B. F., 1983 Transformation of smectite to kaolinite in naturally acid soil systems, structural and thermodynamic considerations Soil Sci. Soc. Am. J. 47 158163 10.2136/sssaj1983.03615995004700010031x.CrossRefGoogle Scholar
Karathansis, A. D. and Hajek, B. F., 1984 Evaluation of aluminum-smectite stability in naturally acid soils Soil Sci. Soc. Am. J. 48 413417 10.2136/sssaj1984.03615995004800020039x.CrossRefGoogle Scholar
Kittrick, J. A., 1971 Montmorillonite equilibria and the weathering environment Soil Sci. Soc. Am. Proc. 35 815820 10.2136/sssaj1971.03615995003500050049x.CrossRefGoogle Scholar
Kodama, H., 1979 Clay minerals in Canadian soils: Their origin, distribution and alteration Can. J. Soil Sci. 59 3758 10.4141/cjss79-005.CrossRefGoogle Scholar
Lagaly, G., 1981 Characterization of clays by organic compounds Clay Miner. 16 121 10.1180/claymin.1981.016.1.01.CrossRefGoogle Scholar
Lagaly, G., 1982 Layer charge heterogeneity of vermiculites Clays & Clay Minerals 30 215222 10.1346/CCMN.1982.0300308.CrossRefGoogle Scholar
Lagaly, G., Weiss, A. and Heller, L., 1969 Determination of layer charge in mica-type layer silicates Proc. Internal. Clay Conf. Tokyo, 1968. 1 Jerusalem Israel University Press 6180.Google Scholar
Laird, D. A., 1987 Layer charge and crystalline swelling of expanding 2:1 phyllosilicates .Google Scholar
Laird, D. A., Fenton, T. E. and Scott, A. D., 1988 Layer charge of smectites in an Agrialborll-Argiaquoll sequence Soil Sci. Soc. Am. J. 52 463467 10.2136/sssaj1988.03615995005200020029x.CrossRefGoogle Scholar
Laird, D. A., Scott, A. D. and Fenton, T. E., 1987 Interpretation of alkylammonium characterization of soil clays Soil Sci. Soc. Am. J. 51 16591663 10.2136/sssaj1987.03615995005100060046x.CrossRefGoogle Scholar
Laird, D. A., Scott, A. D. and Fenton, T. E., 1989 Evaluation of the alkylammonium method of determining layer charge Clay & Clay Minerals 37 4146 10.1346/CCMN.1989.0370105.CrossRefGoogle Scholar
McKeague, J. A., 1978 (ed.) () Manual on soil sampling and methods of analysis: 2nd Edition. Can. Soc. Soil Sci. Subcommittee on methods of analysis.Google Scholar
Mehra, O. P. and Jackson, M. L., 1959 Constancy of the sum of mica unit cell potassium surface and interlayer sorption surface in vermiculite-illite clays Soil Sci. Soc. Am. Proc. 23 101105 10.2136/sssaj1959.03615995002300020007x.CrossRefGoogle Scholar
Mermut, A. R., Ghebre-Egziabhier, K. and St. Arnaud, R. J., 1984 The nature of smectites in some fine textured lacustrine parent materials in southern Saskatchewan Can. J. Soil Sci. 64 481494 10.4141/cjss84-050.CrossRefGoogle Scholar
Miller, C. F., Stoddard, E. F., Bradfish, L. J. and Dollase, W. A., 1981 Composition of plutioic muscovite: Genetic implications Can. Mineralogist 19 2534.Google Scholar
Newman, A. C. D., and Brown, G., (1987) The Chemical composition of clays: in Chemistry of Clays and Clay Minerals, Newman, A. C. D., ed., Mineralogical Soc. Monograph 6, Longman, London.Google Scholar
Novak, I. and Cicel, B., 1978 Dissolution of smectites in hydrochloric acid. II Dissolution rate as a function of crystallochemical composition Clays & Clay Minerals 26 341344 10.1346/CCMN.1978.0260504.CrossRefGoogle Scholar
Pawluk, S., 1961 Mineralogical composition of some grey wooded soils developed from glacial till Can. J. Soil Sci. 41 228240 10.4141/cjss61-029.CrossRefGoogle Scholar
Pawluk, S., 1971 Characteristics of fera eluviated Gleysols developed from acid shales in northwestern Alberta Can. J. Soil Sci. 51 113124 10.4141/cjss71-014.CrossRefGoogle Scholar
Pawluk, S. and Lindsay, J. D., 1964 Characteristics and genesis of Brunisolic soils of northern Alberta Can. J. Soil Sci. 44 292303 10.4141/cjss64-044.CrossRefGoogle Scholar
Rice, H. M., Forman, S. A. and Patry, L. M., 1959 A study of some profiles from major soil zones in Saskatchewan and Alberta Can. J. Soil Sci. 39 165177 10.4141/cjss59-022.CrossRefGoogle Scholar
Ross, G. J. and Kodama, H., 1986 Layer charge characteristics of expandable clays from soils Trans. XIII Congress of International Soc. Soil Sci. 5 355370.Google Scholar
Rozenson, I. and Heller-Kallai, L., 1978 Reduction and oxidation of Fe3 in dioctahedral smectites: III Oxidation of octahedral iron in montmorillonite Clays & Clay Minerals 26 8892 10.1346/CCMN.1978.0260202.CrossRefGoogle Scholar
Rühlicke, G. and Kohler, E. E., 1981 A simplified procedure for determining layer charge by the n-alkylammonium method Clay Miner. 16 305307 10.1180/claymin.1981.016.3.08.CrossRefGoogle Scholar
Rühlicke, G. and Nierderbudde, E. A., 1985 Determination of layer-charge density of expandable 2:1 clay minerals in soils and loess sediments using the alkylammonium method Clay Miner. 20 291300 10.1180/claymin.1985.020.3.02.CrossRefGoogle Scholar
Schultze, D. G. and Dixon, J. B., 1979 High gradient magnetic separation of iron oxides and other magnetic minerals from soil clays Soil Sci. Soc. Am. J. 43 793799 10.2136/sssaj1979.03615995004300040036x.CrossRefGoogle Scholar
Spiers, G. A., 1982 Mineralogy and geochemistry of parent materials of the Athabasca tar sands region .Google Scholar
Spiers, G. A., Dudas, M. J. and Turchenek, L. W., 1989 Chemical and mineralogical composition of soil parent materials in northeast Alberta Can. J. Soil Sci. 69 721737 10.4141/cjss89-074.CrossRefGoogle Scholar
Theissen, D. A. and Harward, M. E., 1962 A paste method for preparation of slides for clay mineral identification by X-ray diffraction Soil Sci. Soc. Am. Proc. 26 9091.CrossRefGoogle Scholar
Villeneuve, J. P., LaFrance, P., Banton, O., Frechette, P. and Robert, C., 1988 A sensitivity analysis of adsorption and degradation parameters in the modeling of pesticide transport in soils J. Contaminant Hydro. 3 7796 10.1016/0169-7722(88)90018-6.CrossRefGoogle Scholar
Warren, C. J., 1991 Weathering, trace elements, and smectite stability in extremely acid soil environments .Google Scholar
Warren, C. J. and Dudas, M. J., 1992 Acidification adjacent to an elemental sulfur stockpile: I Mineral weathering Can. J. Soil Sci. 72 113126 10.4141/cjss92-011.CrossRefGoogle Scholar
Warren, C. J., Xing, B. and Dudas, M. J., 1990 Simple microwave digestion technique for elemental analysis of mineral soil samples Can. J. Soil Sci. 70 617620 10.4141/cjss90-064.CrossRefGoogle Scholar
Weiss, A., 1963 Mica-type layer silicates with alkylammonium ions Clays & Clay Minerals 10 191224 10.1346/CCMN.1961.0100116.CrossRefGoogle Scholar