Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-18T23:17:20.375Z Has data issue: false hasContentIssue false

Extraction of Interlayer K from Phlogopite Specific Effects of Cations Role of Na and H Concentrations in Extraction Solutions

Published online by Cambridge University Press:  01 July 2024

J. Mamy*
Affiliation:
Institut National de la Recherche Agronomique, Route de Saint-Cyr, 78-Versailles, France

Abstract

The accurate optical observation of alteration fringes developing in phlogopite flakes, shows that the morphology of the fringes is specific for some cations, such as Na, Mg and Ca, replacing K.

A careful chemical study of the exchange kinetics of interlayer K shows that, beside the classical effect of blocking the exchange reaction with cations such as K, Rb, Cs, NH4, it is possible to induce an increase of the rate of K exchange when adding to a concentrated solution of one cation, a very small amount of other cation such as Na or H. The effects of mixtures such as Ca-Na and Ca-H are reported here in detail. Attention is drawn to the decisive part played by the impurities which may be contained in the reagents used.

Résumé

Résumé

L’observation optique précise des franges d’altération se développant dans les paillettes de phlogopite démontre que la morphologie de ces franges est spécifique pour quelques cations, tels que Na, Mg et Ca remplaçant K.

Une minutieuse étude chimique de la cinétique d’échange de K en inter-couche montre que, à part l’effet classique de blocage de la réaction d’échange avec des cations comme K, Rb, Cs, NH4, il est possible d’induire une accélération de la vitesse d’échange de K en ajoutant à une solution concentrée d’un cation une trés faible quantité d’un autre cation, par exemple Na ou H. Les effets de mélanges comme Ca-Na ou Ca-H sont reportés ici en détail. L’attention est attirée sur la part décisive jouée par les impuretés que peuvent contenir les réactifs utilisés.

Kurzreferat

Kurzreferat

Die genaue optische Beobachtung von Randveränd erungen in Phlogopitschuppen erweist, dass die Morphologie der Ränder für manche Kationen, wie etwa Na, Mg und Ca, die das K ersetzen, kennzeichnend ist.

Eine sorgfältige chemische Untersuchung der Austauschkinetik des Zwischenschichtenkaliums zeigt, dass es möglich ist, neben der klassischen Wirkung einer Blockierung der Austauschreaktion mit Kationen wie K, Rb, Cs, NH4, durch Zugabe einer sehr kleinen Menge anderer Kationen wie Na oder H zu einer konzentrierten Lösung eines Kations eine Zunahme in der Geschwindigkeit des K Austausches herorzurufen. Die Wirkungen von Mischungen wie Ca-Na und Ca-H werden in Detail beschrieben. Es wird auf die entscheidende Rolle aufmerksam gemacht, die durch möglicherweise in den zur Verwendung gelangenden Reagenzien anwesende Verunreinigungen gespielt wird.

Резюме

Резюме

Прецизионное оптическое изучение каемок изменения на флогопитовых чешуйках показывает, что морфология этих каемок специфична для некоторых катионов, таких как Nа, Мg и Са, замещающих К. Тщательно выполненное химическое изучение кинетики обмена межслоевого К свидетельствует о том, что на ряду с классическим эффектом блокирования обменных реакций с катионами (например, K, Rb, Сs, NH4), возможно вызвать увеличение скорости обмена К добавлением к концентрированному раствору одного катиона очень небольших количеств другого катиона (Nа или H). Детально рассмотрен эффект действия смесей (Са-Nа, Са-Н). Обращено внимание на решающую роль примесей, которые могут содержаться в используемых реактивах.

Type
Research Article
Copyright
Copyright © The Clay Minerals Society 1970

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barbaro, N. O. (1968) Contribution á l’étude du mécanisme de vermiculitisation d'une biotite. Thèse Université Catholique de Louvain.Google Scholar
Chaussidon, J. (1969) Stretching frequencies of structural hydroxyls of hectorite and K depleted phlogopite as influenced by interlayer cations and hydration.: Clays and Clay Minerals, To be published.CrossRefGoogle Scholar
Chute, J. H. and Quirk, J. P. (1967) Diffusion of potassium from micalike Clay minerals: Nature 213, 11561157.CrossRefGoogle Scholar
Hossner, L. R. (1966) Release of magnesium by leaching from vermiculite, mica and perchlorite: Diss. Abstr. 26 (8), 4140.Google Scholar
Marshall, S. E. and McDowell, L. L. (1965) Surface reactivity of micas: Soil Sci. 99 (2), 115131.CrossRefGoogle Scholar
Newman, A. C. D. and Brown, G. (1966) Chemical change during the alteration of micas: Clay Minerals Bull. 6, 297310.CrossRefGoogle Scholar
Newman, A. C. D. (1969) Cation exchange properties of micas. I—The relation between mica composition and potassium exchange in solutions of different pH: J. Soil Sci. 20 (2), 357373.CrossRefGoogle Scholar
Raussell-Colom, J. A., Sweatman, T. R., Wells, C. B. and Norrish, K. (1965) Studies in the artificial weathering of mica: Experimental Pedology, pp. 4072. Butterworth, London.Google Scholar
Reed, M. G. and Scott, A. D. (1962) Kinetics of potassium release from biotite and muscovite in sodium tetraphenylboron solutions. Proc. Soil Sci. Soc. Am. 26, 437440.CrossRefGoogle Scholar
Reichenbach, Graf V. H. and Rich, C. I. (1968) Preparation of dioctahedral vermiculites from muscovite and subsequent exchange properties. 9th Intern. Congr. Soil. Sci. Adelaide. 1, 709717.Google Scholar
Rich, C. I. (1964) Effect of cation size and pH on potassium exchange in Nason soil: Soil. Sci. 98, 100106.CrossRefGoogle Scholar
Robert, M. (1968) Etude expérimentale sur les processus de vermiculitisation des micas trioctaédriques. Bilan de révolution et conditions de genèse des vermiculites: Bull. Group Franç. Argiles. 20, 153171.CrossRefGoogle Scholar
Rousseau, J. M. (1966) Contribution à l’étude du mécanisme de vermiculitisation d'une biotite. Mémoire Université Catholique de Louvain.Google Scholar
Scott, A. D. and Smith, S. J. (1966) Susceptibility of interlayer potassium in micas to exchange with sodium. Clays and Clay Minerali 14, 6981.CrossRefGoogle Scholar
Scott, A. D. and Reed, M. G. (1966) Expansion of potassium depleted muscovite. Clays and Clay Minerals 13, 247261.Google Scholar
Smith, S. I. and Scott, A. D. (1966) Extractable potassium in grundite illite: Method of extraction. Soil Sci. 102, 115122.CrossRefGoogle Scholar
Thompson, T. D., Wentworth, S. A. and Brindley, G. W. (1967) Hydration states of an expanded phlogopite in relation to interlayer cations. Clay Minerals 7, 4349.CrossRefGoogle Scholar
Tucker, B. M. (1964) The solubility of potassium from soil Ulites I—The dependence of solubility on pH: Aust. J. Soil. Res. 2, 5666. II —Mechanisms of potassium release: Aust. J. Soil. Res. 2, 67–75.CrossRefGoogle Scholar
Tucker, B. M. (1967) The solubility of potassium from soil illites. V. Interlayer hydrogen ions; heats of reaction; and synopsis. Aust. J. Soil. Res. 5, 203214.CrossRefGoogle Scholar
Wells, C. B. and Norrish, K. (1968) Accelerated rates of release of interlayer potassium from micas. 9th Intern. Congr. Soil. Sci. Adelaide 2, 683694.Google Scholar