Hostname: page-component-5c6d5d7d68-tdptf Total loading time: 0 Render date: 2024-08-24T15:01:33.087Z Has data issue: false hasContentIssue false

The Formation of Hematite from Amorphous Iron(III)Hydroxide

Published online by Cambridge University Press:  01 July 2024

W. R. Fischer
Affiliation:
Institut für Bodenkunde, Techn. Universität München, 805 Freising-Weihenstephan, GFR
U. Schwertmann
Affiliation:
Institut für Bodenkunde, Techn. Universität München, 805 Freising-Weihenstephan, GFR

Abstract

The formation of hematite from amorphous Fe(III)hydroxide in aqueous systems at pH 6 and 70°C, both with and without oxalate, was followed by kinetic measurements, electron microscopy, i.r. spectroscopy and thermal analysis.

In the absence of oxalate, small amorphous particles coalesce into aggregates which eventually become single crystals of hematite. When oxalate is present, crystal growth is much faster and does not proceed through the intermediate stage of aggregation. Aggregates, when formed, consist of groups of single crystals. It is suggested that oxalate accelerates the nucleation of hematite crystals by acting as a template, the Fe-Fe distance in Fe-oxalate ions being similar to that in hematite.

Type
Research Article
Copyright
Copyright © 1975, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Afremow, L. C. and Vandeberg, J. T., (1966) High resolution spectra of inorganic pigments and extenders in the mid-i.r. region from 1500cm-1-200cm-1 J. Paint Techn. 38 169201.Google Scholar
Chukhrov, F. V. Zvyagin, B. B. Ermilova, L. P. and Gorsh-kov, A. I., (1972) New data on iron oxides in the weathering zone Proc. Intern. Clay Conf. Madrid 1 333342.Google Scholar
Farmer, V. C. and Mitchell, B. D., (1963) Occurrence of oxalates in soil clays following hydrogen peroxide treatment Soil Sci. 96 221229.CrossRefGoogle Scholar
Feitknecht, W. and Michaelis, W., (1962) Über die Hydrolyse von Eisen(III)-perchlorat-Lösungen Helv. Chim. Acta 45 212224.CrossRefGoogle Scholar
Fischer, W. R., (1971) Modellversuche zur Bildung und Auflösung von Goethit und amorphen Eisenoxiden im Boden .Google Scholar
Garavelli, C., (1957) La struttura della oxalite FeC2O4.2H2O Period. Min 26 269303.Google Scholar
Langmuir, D., (1971) Particle size effect on the reaction goethite = hematite + water Am. J. Sci. 271 147156.CrossRefGoogle Scholar
Mackay, A. L., (1960) Some aspects of the topochemistry of the iron oxides and hydroxides 4th Int. Symp. Reactivity of Solids, Amsterdam 571583.Google Scholar
Mohr, E. C. J. v. Baren, F. A. and v. Schuylenborgh, J., (1972) Tropical Soils 3rd Edition 433450.Google Scholar
Schmelz, M. J. (1957) et al. I.r. absorption spectra of inorganic coordination complexes, IX. I.r. spectra of oxalato complexes Spectrochim. Acta 9 5158.Google Scholar
Schwertmann, U., (1964) Differenzierung der Eisenoxide des Bodens durch photochemische Extraktion mit saurer Ammoniumoxalat-Lösung Z. Pflanzenernähr. Düng. Bodenkunde 105 194202.CrossRefGoogle Scholar
Schwertmann, U., (1969) Die Bildung von Eisenoxidmineralen Fortschr. Min. 46 274285.Google Scholar
Schwertmann, U., (1969) Der Einfluß einfacher organischer Anionen auf die Bildung von Goethit und Hämatit aus amorphem Eisen(III)-hydroxid Geoderma 3 207214.CrossRefGoogle Scholar
Schwertmann, U. and Fischer, W. R., (1966) Zur Bildung von α-Fe(OH) und α-Fe2O3 aus amorphem Eisen(III)-hy-droxid Z. anorg. allg. Chem. 346 137142.CrossRefGoogle Scholar
Schwertmann, U. and Fischer, W. R., (1973) Natural ‘amorphous’ ferric hydroxide Geoderma 10 237247.CrossRefGoogle Scholar
Schwertmann, U. and Taylor, R. M., (1972) The transformation of lepidodocrocite to goethite Clavs and Clay Minerals 20 151158.CrossRefGoogle Scholar
Towe, K. M. and Bradley, W. F., (1967) Mineralogical constitution of colloidal ‘hydrous ferric oxides’ J. Colloid. Interface Sci. 24 384392.CrossRefGoogle Scholar