Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-07-01T13:44:38.574Z Has data issue: false hasContentIssue false

Globular Cluster Microstructure of Endellite (Hydrated Halloysite) from Bedford, Indiana

Published online by Cambridge University Press:  01 July 2024

Sidney Diamond
Affiliation:
School of Civil Engineering, Purdue University, Lafayette, Indiana 47907, U.S.A.
James W. Bloor
Affiliation:
Department of Civil Engineering, The University of Calgary, Calgary, Alberta, Canada

Abstract

Scanning electron microscope observation of endellite from Bedford, Indiana, discloses the existence of globular clusters of quasi-tubular endellite particles radiating from common centers. Individual clusters are of the order of 10 μ in overall diameter. The individual quasi-tubular particles are irregularly flattened in cross section, and some may be plugged at the ends. Conventional oven drying at 105°C results in partial unrolling and incomplete flattening of the quasi-tubular particles of some of the clusters. The globular cluster microstructure is taken to represent the result of in-situ crystallization from solution. If this is so, these hollow tubes cannot have arisen by the mechanism of repeated extrusion of concentric zonal crystallites as postulated by Chukhrov and Zvyagin.

Résumé

Résumé

L’observation d’endellite de Bedford, Indiana, par exploration au microscope électronique, a mis à jour l’existence de groupes globulaires de particules d’endellite quasi tubulaires partant de centres communs. Ces groupes individuels ont un diamètre hors-tout de l’ordre de 10μ. Les particules individuelles quasi tubulaires sont irrégulièrement applaties par le travers et certaines peuvent être enfoncées aux bouts. Le séchage à 105°C dans un four traditionnel donne pour résultat un déroulement partiel et un applatissement incomplet des particules quasi tubulaires de certain des groupes. La microstructure globulaire des groupes est considérée comme étant le résultat de la cristallisation in-situ de la solution. Si cela est, ces tubes creux ne peuvent s’être dèveloppés par le mécanisme de l’extrusion répétée de cristallites à zone concentrique comme il a été postulé par Chukhrov et Zvyagin.

Kurzreferat

Kurzreferat

Die genaue Prüfung im Elektronenmikroskop von Endellit aus Bedford, Indiana, zeigt die Anwesenheit kugelförmiger Büschel von quasi-röhrenförmigen Endellit Teilchen, die aus gemeinsamen Mittelpunkten ausstrahlen. Einzelbüschel haben einen Gesamtdurchmesser in der Grössenordnung von 10 Mikron. Die einzelnen quasi-röhrenförmigen Teilchen sind im Querschnitt unregelmässig abgeflacht, und manche können an den Enden verstöpselt sein. Die übliche Trocknung im Ofen bei 105°C ergibt teilweises Aufrollen und unvollständige Abflachung der quasi-röhrenförmigen Teilchen einiger der Büschel. Es wird angenommen, dass das Mikrogefüge von kugelförmigen Büscheln das Ergebnis örtlicher Kristallisation aus der Lösung darstellt. Wenn das zutrifft, so können diese Hohlröhren nicht, wie von Chukhrov und Zvyagin postuliert, durch den Mechanismus Wiederholter Extrusion konzentrischer Kristalliten zonen entstanden sien.

Резюме

Резюме

Исследование в сканирующем электронном микроскопе образцов энделлита из Бедфорда (шт. Индиана) обнаружило наличие в них шаровых агрегатов, образованных из квази-трубчатых частиц энделлита, радиально расходящихся из общего центра. Поперечник отдельных агрегатов — порядка 10 мк. Отдельные квази-трубчатые частицы неправильно сплющены в поперечном сечении, а некоторые закупорены на концах. Высушивание в печи при температуре 105° вызывало частичное разворачивание и неполное выравнивание квазитрубчатых частиц некоторых агрегатов. Микроструктура из шаровых агрегатов принимается как следствие их кристаллизации in situ из раствора. Если это так, то эти полые трубки не могут возникать в результате повторного выпадения концентрических зональных кристаллитов, на которое указывали Чухров и Звягин.

Type
Research Article
Copyright
Copyright © 1970 The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bates, T. F., Hildebrand, F. A. and Swineford, A. (1950) Morphology and structure of endellite and halloysite: Am. Mineralogist 35, 463484.Google Scholar
Bates, T. F. and Comer, J. J. (1955) Electron microscopy of clay surfaces: Clays and Clay Minerals 3, 125.Google Scholar
Bates, T. F. and Comer, J. J. (1959) Further observations on the morphology of chrysotile and halloysite: Clays and Clay Minerals 6, 237248.Google Scholar
Callaghan, E. (1948) Endellite deposits in Gardner Mine Ridge, Lawrence Co., Indiana: Indiana Dept. Cons. Div. Geol. , Bull. 1.Google Scholar
Chukhrov, F. V. and Zvyagin, B. B. (1966) Halloysite, a crystallochemically and mineralogically distinct species: Proc. Intern. Clay Conf. 1966, Jerusalem, Vol. 1, 1125. Pergamon Press, Oxford.Google Scholar
Comer, J. J. and Turley, J. W. (1955) Replica studies of bulk clays: J. Appl. Phys. 26, 346350.CrossRefGoogle Scholar
Davis, D. W., Rochow, T. C., Rowe, F. G., Fuller, M. L., Kerr, P. F. and Hamilton, P. K. (1950) Electron micrographs of reference clay minerals: Preliminary Report No. 6, API Project 49, Columbia Univ. N.Y. 117.Google Scholar
Diamond, S. (1970) Pore-size distribution in clays -.Clays and Clay Minerals 18, 723.CrossRefGoogle Scholar
Keller, W. D., McGrain, P., Reesman, A. L. and Saum, N. M. (1966) Observations on the origin of endellite in Kentucky, and their extension to “Indianaite”: Clays and Clay Minerals 13, 107120.Google Scholar
Kerr, P. F., Main, M. S. and Hamilton, P. K. (1950) Occurrence and microscopic examination of reference clay mineral specimens, Part 1, Occurrence: Preliminary Report No. 5, API Project 49, Columbia Univ., N.Y. 114.Google Scholar
Pundsack, Fred L. (1956) Density and structure of endellite: Clays and Clay Minerals 5, 129135.Google Scholar
Sand, L. B. and Comer, J. J. (1955) A study in morphology by electron diffraction: Clays and Clay Minerals 3, 2630.Google Scholar
Sudo, T. and Takahashi, H. (1955) Shapes of halloysite particles in Japanese clays: Clays and Clay Minerals 4, 6779.Google Scholar
Taggart, M. S., Milligan, W. O. and Studer, H. P. (1955) Electron micrographie studies of clays: Clays and Clay Minerals 3, 3164.Google Scholar