Hostname: page-component-84b7d79bbc-lrf7s Total loading time: 0 Render date: 2024-07-29T13:48:19.609Z Has data issue: false hasContentIssue false

Infrared Spectroscopic Study of the Formamide-Na-Montmorillonite Complex. Conversion of s-Triazine to Formamide

Published online by Cambridge University Press:  02 April 2024

T. T. Nguyen*
Affiliation:
C.S.I.R.O. Division of Soils, Private Mail Bag No. 2, Glen Osmond, South Australia 5064, Australia

Abstract

The adsorption and degradation on montmorillonite of s-triazine, the parent compound of a major group of triazine-based herbicides, were studied by Fourier-transform infrared spectroscopy. The original s-triazine appeared to hydrolyze with residual bound water in montmorillonite at 20°C to produce formamide, which formed an intercalate with the clay. A mechanism for the conversion of s-triazine to formamide was proposed which does not support earlier reports that formic acid and ammonia are the reaction products. The infrared spectrum of the formamide-Na-montmorillonite intercalate suggests that formamide reacted with the exchangeable Na cation and that the NH2 group hydrogen bonded with the clay. Assuming the intercalated formamide molecule to be planar, the molecular plane was found to be inclined at ~33° with respect to the plane of the silicate sheet. C-N and C-O bonds were also found to be tilted at the same angle with respect to the clay surface. The proposed orientation is in good agreement with the measured value of d(001) for the formamide-Na-montmorillonite complex. The proposed model of the formamide-montmorillonite complex serves as a basis for comparison of other clay-amide complexes that are important in protein-clay interactions.

Type
Research Article
Copyright
Copyright © 1986, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acheson, R. M., 1967 An Introduction to the Chemistry of Heterocyclic Compounds London Interscience Publishers 368.Google Scholar
Adams, J. M. and Jefferson, D. A., 1976 The crystal structure of a dickite: formamide intercalate Al2Si2O5(OH)4 ¦ HCONH2 Acta Crystallogr. B32 11801183.CrossRefGoogle Scholar
Adams, J. M., Reid, P. I., Thomas, J. M. and Walters, M. J., 1976 On the hydrogen positions in a kaolinite/formamide intercalate Clays & Clay Minerals 24 267269.CrossRefGoogle Scholar
Berger, A., Loewenstein, A. and Meiboom, M., 1959 Nuclear magnetic resonance study of protolysis and ionization of N-methylacetamide J. Amer. Chem. Soc. 81 6267.CrossRefGoogle Scholar
Brown, C. B. and White, J. L., 1969 Reactions of 12 s-triazines with soil clays Soil Sci. Soc. Amer. Proc. 33 863867.CrossRefGoogle Scholar
Bukowska, J. and Miaskiewicz, K., 1981 Infrared, Raman, and CNDO studies of the effect of ions on the electron density distribution in formamide J. Mol. Struct. 74 110.CrossRefGoogle Scholar
Costain, C. C. and Dowling, J. M., 1960 Microwave spectrum and molecular structure of formamide J. Chem. Phys. 32 158165.CrossRefGoogle Scholar
Cruz, M., Laycock, A. and White, J. L., 1969 Perturbation of OH groups in intercalated kaolinite donor-acceptor complexes—I. Formamide-, methylformamide-, and dimeth-ylformamide-kaolinite complexes Proc. Int. Clay Conf, Tokyo 1969 775789.Google Scholar
Cruz, M., White, J. L. and Coulston, F., 1972 Surface chemistry of pesticide-soil interactions Environmental Quality and Safety, Vol. 1 New York Academic Press 221229.Google Scholar
Cruz, M., White, J. L. and Russell, J. D., 1968 Montmorillonite-s-triazine interactions Israel J. Chem. 6 315323.CrossRefGoogle Scholar
Daunt, S. J., Shurvell, H. F. and Pazdemik, L., 1976 Solid state vibrational spectra of s-triazine and s-triazine-d3 and the monoclinic to rhombohedral phase transition J. Raman Spectrosc. 4 205223.CrossRefGoogle Scholar
Dowdy, R. H. and Mortland, M. M., 1968 Alcohol-water interactions on montmorillonite surfaces: II. Ethylene glycol Soil Sci. 105 3643.CrossRefGoogle Scholar
Evans, J. C., 1954 Infrared spectrum and thermodynamic functions of formamide J. Chem. Phys. 22 12281234.CrossRefGoogle Scholar
Fraser, R. D. B., 1953 Interpretation of infrared dichroism in fibrous protein structures J. Chem. Phys. 21 15111515.CrossRefGoogle Scholar
Fraser, R. D. B., 1958 Interpretation of infrared dichroism in axially oriented polymers J. Chem. Phys. 28 11131115.CrossRefGoogle Scholar
Gardiner, D. J., Lees, A. J. and Straughan, B. P., 1979 Study of intermolecular hydrogen bonding in formamide by vibrational spectroscopy J. Mol. Struct. 53 1524.CrossRefGoogle Scholar
Goubeau, J., John, E. L., Kreutzberger, A. and Grundmann, C., 1954 Triazines. X. The infrared and Raman spectra of 1,3,5-triazine J. Phys. Chem. 58 10781081.CrossRefGoogle Scholar
Grundmann, C. and Foerst, W., 1968 Syntheses with s-triazine Newer Methods of Preparative Organic Chemistry, Vol. 5 Weinheim Verlag Chemie 176210.Google Scholar
Grundmann, C. and Kreutzberger, A., 1955 Triazines. XIII. The ring cleavage of s-triazine by primary amines. A new method for synthesis of heterocycles J. Amer. Chem. Soc. 77 65596562.CrossRefGoogle Scholar
Ito, K. and Shimanouchi, T., 1972 Vibrational spectra of crystalline formamide J. Mol. Spectrosc. 42 8699.CrossRefGoogle Scholar
Joule, J. A. and Smith, G. F., 1979 Heterocyclic Chemistry London Van Nostrand Reinhold 123125.Google Scholar
Kitano, M. and Kuchitsu, K., 1974 Molecular structure of formamide as studied by gas electron diffraction Bull. Soc. Chem. Japan 47 6772.CrossRefGoogle Scholar
Lancaster, J. E., Stamm, R. F. and Colthup, N. B., 1961 The vibrational spectra of s-triazine and s-triazine-d3 Spec- trochim. Acta 17 155165.CrossRefGoogle Scholar
Ledoux, R. L. and White, J. L., 1966 Infrared studies of hydrogen bonding interaction between kaolinite surfaces and intercalated potassium acetate, hydrazine, formamide, and urea J. Colloid Interface Sci. 21 127152.CrossRefGoogle Scholar
Modest, E. J. and Modest, E. J., 1961 s-Triazine Heterocyclic Compounds, Vol. 7 New York Wiley 627720.Google Scholar
Mosteller, L. P. and Wooten, F., 1968 Optical properties and reflectance of uniaxial absorbing crystals J. Opt. Soc. Amer. 58 511518.CrossRefGoogle Scholar
Olejnik, S., Posner, A. M. and Quirk, J. P., 1971 The infrared spectra of interlamellar kaolinite-amide complexes—I. The complexes of formamide, N-methylformamide and dimethylformamide Clays & Clay Minerals 19 8394.CrossRefGoogle Scholar
Politzer, P., Daiker, K. C. and Deb, B. M., 1981 Models for chemical reactivity The Force Concept in Chemistry New York Van Nostrand Reinhold 294387.Google Scholar
Puranik, P. G. and VentakaRamiah, K., 1959 Infraredand Raman spectroscopic studies of the association of formamide J. Mol. Spectrosc. 3 486495.CrossRefGoogle Scholar
Rasanen, M., 1983 A matrix infrared study of monomeric formamide J. Mol. Struct. 101 275286.CrossRefGoogle Scholar
Raupach, M., Emerson, W. W. and Slade, P. G., 1979 The arrangement of paraquat bound by vermiculite and montmorillonite J. Colloid Interface Sci. 69 398408.CrossRefGoogle Scholar
Raupach, M. and Janik, L. J., 1976 The orientation of ornithine and 6-aminohexanoic acid adsorbed on vermiculite from polarized i.r. ATR spectra Clays & Clay Minerals 24 127133.CrossRefGoogle Scholar
Raupach, M., Slade, P. G., Janik, L. and Radoslovich, E. W., 1975 A polarized infrared and X-ray study of lysinevermiculite Clays & Clay Minerals 23 181186.CrossRefGoogle Scholar
Russell, J. D., Cruz, M., White, J. L., Bailey, G. W., Payne, W. R., Pope, J. D. and Teasley, J. I., 1968 Mode of chemical degradation of s-triazine by montmorillonite Science 160 13401342.CrossRefGoogle Scholar
Smith, C. H. and Thompson, R. H., 1972 The Raman spectra of the deuterated formamide J. Mol. Spectrosc. 42 227238.CrossRefGoogle Scholar
Suzuki, I., 1960 Infrared spectra and normal vibrations of formamide, HCONH2, HCOND2, DCONH2 and DCOND2 Bull. Chem. Soc. Japan 33 13591365.CrossRefGoogle Scholar
Tahoun, S. A. and Mortland, M. M., 1966 Complexes of montmorillonite with primary, secondary, and tertiary amides—I. Protonation of amides on the surface of montmorillonite Soil Sci. 102 248254.CrossRefGoogle Scholar
Tahoun, S. A. and Mortland, M. M., 1966 Complexes of montmorillonite with primary, secondary, and tertiary amides—II. Coordination of amides on the surface of montmorillonite Soil Sci. 102 314321.CrossRefGoogle Scholar