Hostname: page-component-84b7d79bbc-x5cpj Total loading time: 0 Render date: 2024-07-26T23:30:57.089Z Has data issue: false hasContentIssue false

Layer Silicates from Serpentinite-Pegmatite Contact (Wiry, Lower Silesia, Poland)

Published online by Cambridge University Press:  28 February 2024

J. Jelitto
Affiliation:
Institute of Geochemistry, Mineralogy and Petrography, Faculty of Geology, Warsaw University, Żwirki i Wigury 93, 02-089 Warsaw, Poland
E. Dubińska
Affiliation:
Institute of Geochemistry, Mineralogy and Petrography, Faculty of Geology, Warsaw University, Żwirki i Wigury 93, 02-089 Warsaw, Poland
A. Wiewióra
Affiliation:
Institute of Geological Sciences, Polish Academy of Sciences, Ÿwirki i Wigury 93, 02-089 Warsaw Poland
P. Bylina
Affiliation:
Institute of Geological Sciences, Polish Academy of Sciences, Ÿwirki i Wigury 93, 02-089 Warsaw Poland

Abstract

Highly tectonized contact between serpentinite and younger pegmatite in the magnesite mine of Wiry contains various layer silicates. Vermiculite, chlorite, smectite, and interstratified mica-vermiculite were recognized by means of routine XRD examination. Two three component interstratifications of mica-vermiculite-chlorite and chlorite-swelling chlorite-smectite were identified by a combined procedure of deconvolution of the XRD patterns and simulation of XRD tracings. A mineral with large diffraction maxima, displaying “chlorite intergrade” characteristics, appeared to be a mixture of chlorite, mixed layer chlorite-smectite, and vermiculite. Polytypes of phyllosilicates were determined by the X-ray transmission method. Due to the heritage of parent mineral polytype structure by transitional products of alteration, two distinct sequences of layer silicates were observed: one formed from trioctahedral mica (vermiculite, mixed layer mica-vermiculite); and one evolved from chlorite (e.g., mixed layer chlorite-swelling chloritesmectite). A tentative scheme of the primary contact zone structure, not obscured by subsequent brittle tectonics either by transformation of layer silicates, is proposed.

Type
Research Article
Copyright
Copyright © 1993, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bailey, S. W. and Gieseking, J. E., 1975 Chlorites Soil Components, Vol. 2, Inorganic Components New York Springer-Verlag 191263 10.1007/978-3-642-65917-1_7.CrossRefGoogle Scholar
Bailey, S. W., (1980) Structures of layer silicates: in Crystal Structures of Clay Minerals and Their X-ray Identification, Brindley, G. W., and Brown, G., eds., Mineralogical Society Monograph No. 5, 1124.Google Scholar
Bailey, S. W., 1982 Nomenclature for regular interstratifications A report of the AIPEA Nomenclature Committee, Supplement to AIPEA New letters 18 112.Google Scholar
Barnhisel, R. I., 1977 Chlorites and hydroxy interlayered vermiculite and smectite Minerals in Soil Environments Madison, Wisconsin Soil Science Society of America 331356.Google Scholar
Basset, W. A., 1963 The geology of vermiculite occurrences Clays & Clay Minerals 12 6169.Google Scholar
Beaufort, D., Schultz, L. G., Olphen, H. van and Mumpton, F. A., 1987 Interstratified chlorite/smectite (“meta-morphic vermiculite”) in the upper precambrian greywackes of Rouez, Sarthe, France Proc. Int. Clay Conf. Denver 1985 Bloomington, Indiana The Clay Minerals Society 5965.Google Scholar
Brindley, G. W., 1966 Ethylene glycol and glycerol complexes of smectites and vermiculites Clay Miner. 6 237259 10.1180/claymin.1966.006.4.01.CrossRefGoogle Scholar
Brindley, G. W. and de Souza, J. V., 1975 A golden-colored, ferri-nickel chloritic mineral from Morro do Niquel, Minas Gerais, Brasil Clays & Clay Minerals 23 1115 10.1346/CCMN.1975.0230102.CrossRefGoogle Scholar
Buurman, P., Meijer, E. L. and van Wijck, J. H., 1988 Weathering of chlorite and vermiculite in ultramafic rocks of Cabo Ortegal, Northwestern Spain Clays & Clay Minerals 36 263269 10.1346/CCMN.1988.0360308.CrossRefGoogle Scholar
de la Calle, C., Dubermat, J., Suquet, H., Pezerat, H., Gaultier, J. and Mamy, J., 1976 Crystal Structure of two-layer Mg-vermiculites and Na-, Ca-vermiculites Proc. Internatl. Conf. 1975 Wilmette, Illinois Applied Publications Ltd 201209.Google Scholar
de la Calle, C., Suquet, H. and Bailey, S. W., 1988 Vermiculite Reviews in Mineralogy, Vol. 19, Hydrous Phyllosili-cates (Exclusive of Micas) Chelsea, Michigan Mineralogical Society of America 455492 10.1515/9781501508998-017.CrossRefGoogle Scholar
Curtis, C. D. and Brown, P. E., 1969 The metasomatic development of zoned ultrabasic bodies in Unst, Shetland Contrib. Mineral. Petrol. 24 275292 10.1007/BF00371271.CrossRefGoogle Scholar
De Kimpe, C. R., Miles, N., Kodama, H. and Dejou, J., 1987 Alteration of phlogopite to corrensite at Sharbot Lake, Ontario Clays & Clay Minerals 35 150158 10.1346/CCMN.1987.0350207.CrossRefGoogle Scholar
Drits, V. and Sakharov, B. A., 1976 X-ray Structural Analysis of Mixed-layer Minerals (in Russian) Trans. A.S. U.S.S.R. 295 1252.Google Scholar
Dubińska, E. and Szafranek, D., 1990 On the origin of layer silicates from Jordanόw (Lower Silesia, Poland) Arch. Mi-neralogiczne XLVI 12.Google Scholar
Dubinska, E. and Wiewiόra, A., 1988 Layer silicates in the contact zone between granite and serpentinite, Jordanow, Lower Silesia, Poland Clay Miner. 23 459470 10.1180/claymin.1988.023.4.12.CrossRefGoogle Scholar
Gajewski, Z., 1970 Occurrence and properties of magnesites from the Gogolόw-Jordanόw serpentinite massif against the geological structure of the area (in Polish) Biul. Inst. Geol. No. 240. Z badań ziόz surowcόw Skalnych w Polsce V 55142.Google Scholar
Hoda, S. N. and Hood, W. C., 1972 Laboratory alteration of trioctahedral micas Clays & Clay Minerals 20 343358 10.1346/CCMN.1972.0200602.CrossRefGoogle Scholar
Inoue, A., Schultz, L. G., Olphen, H. van and Mumpton, F. A., 1987 Conversion of smectite to chlorite by hydrothermal and diagenetic alterations, Hokuruku Kuroko Mineralization Area, northeast Japan Proc. Int. Clay Conf. Denver 1985 Bloomington, Indiana The Clay Minerals Society 158164.Google Scholar
Inoue, A. and Utada, M., 1991 Smectite to chlorite transformation in thermally metamorphosed volcanoclastic rocks in the Kamikita Area, northern Honshu, Japan Amer. Mineral. 76 628649.Google Scholar
Jȩdrysek, M. O. and Hałas, S., 1990 The origin of magnesite deposits from the Polish Foresudetic Block ophiolites: Preliminary δ13C and δ18O investigations Terra Nova. 2 154159 10.1111/j.1365-3121.1990.tb00057.x.CrossRefGoogle Scholar
Jonas, E. C. and Brown, T. E., 1959 Analysis of interlayer mixtures of three clay mineral types by X-ray diffraction J. Sediment. Petrol. 29 7786.Google Scholar
Lvova, I. A. and Dyakonov, Y. C., 1973 Geological and mineralogical criteria of estimation of vermiculite raw material occurrences related to ultrabasic rocks (in Russian) Non-metallic Raw Materials in Ultramafic Rocks Moscow Nauka 207210.Google Scholar
Majerowicz, A., 1972 Strzegom-Sobotka granitic massif. A petrological study (in Polish) Geol. Sudetica 6 796.Google Scholar
Majerowicz, A., (1981) Rock series of the Ślȩza Mt. group in the light of petrologic studies of ophiolitic complexes: Ophiolites and Initialites of the Northern Border of the Bohemian Massif, Vol. II, Potsdam-Freiberg, Academy of Science GDR & Polish Academy of Science, 172193.Google Scholar
Méring, S., 1949 X-ray diffraction in disordered layer structures Acta Cryst. 2 371377 10.1107/S0365110X49000977.CrossRefGoogle Scholar
Nagasawa, K., Brown, G. and Newman, A. C. D., 1974 Artificial alteration of biotite into a 14Å-layer silicate with hydroxy-aluminium interlayers Clays & Clay Minerals 22 241252 10.1346/CCMN.1974.0220306.CrossRefGoogle Scholar
Niśkiewiczj, J., 1967 About so-called sandy-clayey Tertiary deposits close to serpentinite massif of Szklary (Lower Silesia) (in Polish) Rocznik Polskiego Towarzystwa Geolo-gicznego 37 456463.Google Scholar
Noack, Y. and Colin, F., 1986 Chlorites and chloritic mixed-layer minerals in profiles on ultrabasic rocks from Moyango (Ivory Coast) and Angiquino (Brazil) Clay Miner. 21 171182 10.1180/claymin.1986.021.2.06.CrossRefGoogle Scholar
Pin, C., Majerowicz, A. and Wojciechowska, I., 1988 Upper Palaeozoic oceanic crust in the Polish Sudetes: Nd-Sr isotope and trace element evidence Lithos 21 195209 10.1016/0024-4937(88)90009-6.CrossRefGoogle Scholar
Pin, C., Puziewicz, J. and Duthou, J. L., 1989 Ages and origins of a composite granitic massif in the Variscan belt: A Rb-Sr study of the Strzegom-Sobόtka Massif, W. Sudetes (Poland) N. Jb. Miner. Abh. 160 7182.Google Scholar
Proust, D., Eymery, J. P. and Beaufort, D., 1986 Supergene vermiculization of a magnesian chlorite: Iron and magnesium removal processes Clavs & Clay Minerals 34 572580 10.1346/CCMN.1986.0340511.CrossRefGoogle Scholar
Reynolds, R.C. Jr. 1985() NEWMOD, a Computer Program for the Calculation of One-Dimensional Diffraction Patterns of Mixed-Layered Clays: Publ. by author, 8 Brook Road, Hanover, New Hampshire.Google Scholar
Reynolds, R. C. Jr. and Bailey, S. W., 1988 Mixed layer chlorite minerals Reviews in Mineralogy, Vol. 19, Hydrous Phyllosilicates (Exclusive of Micas) Chelsea, Michigan Mineralogical Society of America 601629 10.1515/9781501508998-020.CrossRefGoogle Scholar
Rich, C. I., 1968 Hydroxy interlayers in expansible layer silicates Clays & Clay Minerals 16 1530 10.1346/CCMN.1968.0160104.CrossRefGoogle Scholar
Ross, G. J., 1975 Experimental alteration of chlorites into vermiculites by chemical oxidation Nature 255 5504 133134 10.1038/255133a0.CrossRefGoogle Scholar
Ross, G. J. and Kodama, H., 1974 Experimental transformation of chlorite into a vermiculite Clays & Clay Minerals 22 205211 10.1346/CCMN.1974.0220302.CrossRefGoogle Scholar
Ross, G. J. and Kodama, H., 1976 Experimental alteration of a chlorite into a regularly interstratified chlorite-vermiculite by chemical oxidation Clays & Clay Minerals 24 183190 10.1346/CCMN.1976.0240406.CrossRefGoogle Scholar
Sanford, R. F., 1982 Growth of ultramafic reaction zones in greenshist to amphibolite facies metamorphism Am. J. Sci. 282 543616 10.2475/ajs.282.5.543.CrossRefGoogle Scholar
Shimoda, S., 1970 An expandable chlorite-like mineral from the Hanaoka Mine, Akita Prefecture, Japan Clay Miner. 8 352359 10.1180/claymin.1970.008.3.14.CrossRefGoogle Scholar
Vila, E., Ruiz-Amil, A., and Martin de Vidales, J. L., (1988) DRX. Computer program for X-ray powder diffraction analysis: Internal Report C.S.I.C., Madrid, Spain.Google Scholar
Weiss, Z. and Wiewiora, A., 1986 Polytypism of micas. III. X-ray diffraction identification Clays & Clay Minerals 34 5368 10.1346/CCMN.1986.0340107.CrossRefGoogle Scholar
Wiewiόra, A. and Dubińska, E., 1987 Origin of minerals with intermediate chlorite-vermiculite structure (Szklary, Poland) Chem. Geol. 60 185197 10.1016/0009-2541(87)90124-0.CrossRefGoogle Scholar
Wiewiόra, A. and Weiss, Z., 1985 X-ray powder transmission diffractometry determination of mica polytypes: Method and application to natural samples Clay Miner. 20 231248 10.1180/claymin.1985.020.2.07.CrossRefGoogle Scholar