Hostname: page-component-84b7d79bbc-g78kv Total loading time: 0 Render date: 2024-07-25T10:55:45.620Z Has data issue: false hasContentIssue false

Nickel Containing Regularly Interstratified Chlorite-Saponite from Szklary, Lower Silesia, Poland

Published online by Cambridge University Press:  01 July 2024

Andrzej Wiewióra
Affiliation:
Research Centre of Geological Sciences, Polish Academy of Sciences
Kazimierz Szpila
Affiliation:
Institute of Geochemistry, Mineralogy and Petrology, Warsaw University, Poland

Abstract

The present paper describes a new mineral species, namely a regularly interstratified chlorite —trioctahedral smectite bearing as much as 24% NiO. The high Ni content proves it to be nickel mineral.

On the diffractogram of the raw sample, an integral series of reflections with l.d(001) = 30·1 Å was obtained. To study the nature of the component layers, X-ray examinations of glycerol saturated samples and also dehydrated by heating were accomplished. Thermal and chemical analyses were performed in the usual way.

The crystallochemical formula can be presented as follows: saponite layer—(Mg,Ni)3·00 (Si3·75Al0·25) O10(OH)2, charge −0·25; Ca0·06 (Mg,Ni)0·06 K0·01, 4·07 H2O, charge +0·25; chlorite layer—(Mg, Ni)2·02(Al,Fe*)0·65(Si3·76Al0·24) O10(OH)2, charge −0·25; (Mg,Ni)2·75 (Al,Fe3+)0.25 (OH)6, charge +0.25.

The full mineral and chemical characteristics lead to precise conclusions concerning the composition and structure not only of the nonexpanding chlorite layers, but especially of the expanding layers. The latter show the chemical composition of saponite but the interlayer material is composed partly of exchange cations and molecular water and partly of “brucite-like pillows”.

Type
Research Article
Copyright
Copyright © 1975, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Blatter, C. J. Roberson, H. E. and Thompson, G. R., (1973) Regularly interstratified chlorite-dioctahedral smectite in dike-intruded shales, Montana Clays and Clay Minerals 21 207212.CrossRefGoogle Scholar
Bradley, W. F. and Weaver, C. E., (1956) A regularly interstratified chlorite-vermiculite clay mineral Am. Miner. 41 497504.Google Scholar
Brindley, G. W. (1961) Chlorite Minerals. In The X-ray identification and crystal structure of clay minerals (Edited by Brown, G.) Mineralogical Society, London.Google Scholar
Brindley, G. W. and Maksimovic, Z., (1974) The nature and nomenclature of hydrous nickel-containing silicates 2nd meeting European Clav Groups .10.1180/claymin.1974.010.4.05CrossRefGoogle Scholar
Earley, J. W. Brindley, G. W. McVeagh, W. J. and Vanden Heuval, R. C., (1956) A regular interstratified montmoril-lonite-chlorite Am. Miner. 41 258267.Google Scholar
Earley, J. W. and Milne, I. R., (1956) Regularly interstratified montmorillonite-chlorite in basalt 4th Nat. Clay Conf. 381384.Google Scholar
Gallitelli, F., (1956) Chlorite-vermiculite Rend. Accad. Naz. Lincei 21 146154.Google Scholar
Heckroodt, R. O. and Roering, C., (1965) A high-aluminous chlorite-swelling chlorite regular mixed-layer clay mineral Clay Minerals 6 8390.CrossRefGoogle Scholar
Iwanowa, W. P., (1961) Termogramy mineralov Zap. Vses. Min. Obshch. ser. 2 90 5090.Google Scholar
Johnson, L. J., (1964) Occurrence of regularly interstratified chlorite-vermiculite as a weathering product of chlorite in a soil Am. Miner. 49 556573.Google Scholar
Kossovskaja, A. G. Dritz, V. A. and Sokolova, T. H., (1971) O specifikie formirovaniya glinistykh mineralov w raznykh iacyalno-klimaticheskikh obstanovkakh Epigenez i jego mineralnye indikatory. Trans. 221 3553.Google Scholar
Lippman, F., (1954) Keuper clay from Zaisersweiher Heidelberg Beiti: Min. 4 130134.Google Scholar
MacEwan, D. M. C. and Brown, G., (1961) Montmorillonite Minerals The X-ray identification and crystal structures of clay minerals London Mineralogical Society.Google Scholar
Martin-Vivaldi, J. L. and MacEwan, D. M. C., (1960) Corrensite and swelling chlorite Clay Minerals Bull. 4 173181.CrossRefGoogle Scholar
Orcel, J. and Caillère, S., (1938) Thermal transformations in magnesian prochlorites C. r. Acad. Sci., Paris 207 788790.Google Scholar
Orcel, J. and Renaud, P., (1941) Dehydration of ferro-magnesian chlorites C. r. Acad. Sci., Paris 212 918921.Google Scholar
Ostrowicki, B., (1965) Mineraly niklu strefy wietrzenia ser-pentynitów w Szklarach (Dolny Sląsk) Oddz. PAN w Krakowie, Prace Miner alogiczne 1 792.Google Scholar
Spangenberg, K. and Müller, M., (1949) Die lateritische Zersetzung des Peridotits bei der Bildung der Nickelerzlagerstätte von Frankenstein im Schlesien Heidelberg Beitr. Min. Petr. 1 560572.Google Scholar
Stoch, L., (1967) Fizyczno-chemiczne podstawy interpretacji wyników termicznej analizy roz’nicowej Oddz. PAN w Krakowie, Prace Mineralogiczne 7 777.Google Scholar
Sudo, T. and Kodama, H., (1957) Aluminian mixed-layer montmorillonite-chlorite Z. Krist. 109 379387.CrossRefGoogle Scholar
Traube, , (1888) Die Minerale Schlesiens Breslau .Google Scholar
Wiewióra, A., (1973) Kjystalochemiczne Studium mieszano-pakictowych mineralów kaolinit-smektyt Arch. Mineral. 31 5112.Google Scholar