Hostname: page-component-77c89778f8-swr86 Total loading time: 0 Render date: 2024-07-18T17:45:47.608Z Has data issue: false hasContentIssue false

A Novel Process for Intercalating Alkylammonium Ions in a Thai Bentonite and its Effect on Adsorption Performance

Published online by Cambridge University Press:  01 January 2024

Sonchai Intachai
Affiliation:
Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen, 40002, Thailand Department of Chemistry, Faculty of Science, Thaksin University, Phatthalung, 93210, Thailand
Chomponoot Suppaso
Affiliation:
Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen, 40002, Thailand
Nithima Khaorapapong*
Affiliation:
Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen, 40002, Thailand
*
*E-mail address of corresponding author: nithima@kku.ac.th

Abstract

The organization of organic species on the ordered structures of clays and clay minerals is one way to produce inorganic-organic hybrids with controlled microstructures and properties. The reactions of the adsorbed species and their arrangement on the clay surfaces can be guided by the choice of clay and of adsorbed species. The purpose of the present study was to intercalate alkylammonium ions into a Thai bentonite and to study the effect on dye-adsorption efficiency. A series of alkylammonium ions, CnH2n+1NH3+ (n = 8, 10, 12, or 18), was incorporated into the interlayer spaces of a natural bentonite by mixing an aqueous dispersion of bentonite with an aqueous solution of protonated alkylamines at room temperature. The basal spacings of the intercalation compounds varied depending on the alkyl chain lengths and the amount of alkylammonium ions. The alkylammonium ions adsorbed formed lateral monolayer, bilayer, pseudo-trimolecular layer, paraffin-type monolayer, and/or paraffin-type bilayer structures. The adsorption efficiency of alkylammonium-bentonites was determined using batch adsorption experiments of rhodamine 6G from a water-ethanol solution; the greatest efficiency was 87% while that of the bare bentonite was 47%. The loading amount and the arrangement of the intercalated alkylammonium ions in the interlayer spaces, as well as the specific surface area and pore volume, played important roles in the adsorption efficiency of alkylammonium-bentonite. The adsorption equilibrium data for rhodamine 6G on the best adsorbent were interpreted using the Langmuir isotherm model and a pseudo-second order kinetics model. The adsorption efficiency of the adsorbent decreased by only 17% after five runs.

Type
Article
Copyright
Copyright © Clay Minerals Society 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Annadurai, G., Juang, R. S., & Lee, D. J. (2001). Adsorption of rhodamine 6G from aqueous solutions on activated carbon. Journal of Environmental Science and Health – Part A Toxic/Hazardous Substances and Environmental Engineering, 36, 715725. https://doi.org/10.1081/ESE-100103755CrossRefGoogle Scholar
Belhouchat, N., Zaghouane-Boudiaf, H., & Viseras, C. (2017). Removal of anionic and cationic dyes from aqueous solution with activated organo-bentonite/sodium alginate encapsulated beads. Applied Clay Science, 135, 915. https://doi.org/10.1016/j.clay.2016.08.031CrossRefGoogle Scholar
Bergaoui, M., Nakhli, A., Benguerba, Y., Khalfaoui, M., Erto, A., Soetaredjo, F. E., Ismadji, S., & Ernst, B. (2018). Novel insights into the adsorption mechanism of methylene blue onto organobentonite: Adsorption isotherms modeling and molecular simulation. Journal of Molecular Liquids, 272, 697707. https://doi.org/10.1016/j.molliq.2018.10.001CrossRefGoogle Scholar
Brito, D. F., da Silva Filhoc, E. C., Fonsecab, M. G., & Jaberd, M. (2018). Organophilic bentonites obtained by microwave heating as adsorbents for anionic dyes. Journal of Environmental Chemical Engineering, 6, 70807090. https://doi.org/10.1016/j.jece.2018.11.006CrossRefGoogle Scholar
Brunauer, S., Demming, L. S., Demming, W. S., & Teller, E. (1940). On a theory of the van der Waals adsorption of gases. Journal of the American Chemical Society, 62, 17231732. https://doi.org/10.1021/ja01864a025CrossRefGoogle Scholar
Bujdák, J., & Slosiariková, H. (1992). The reaction of montmorillonite with octadecylamine in solid and melted state. Applied Clay Science, 7, 263269. https://doi.org/10.1016/0169-1317(92)90014-ECrossRefGoogle Scholar
Cheng, Z.-L., Li, Y.-X., & Liu, Z. (2018). Study on adsorption of rhodamine B onto Beta zeolites by tuning SiO2/Al2O3 ratio. Ecotoxicology and Environmental Safety, 148, 585592. https://doi.org/10.1016/j.ecoenv.2017.11.005CrossRefGoogle Scholar
Dellisanti, F., Minguzzi, V., & Valdrè, G. (2006). Thermal and structural properties of Ca-rich montmorillonite mechanically deformed by compaction and shear. Applied Clay Science, 31, 282289. https://doi.org/10.1016/j.clay.2005.09.006CrossRefGoogle Scholar
Farhan, A. M., & Sameen, A. S. (2014). Kinetic study of adsorption rhodamine 6G dye from aqueous solutions using bentonite clay. American Journal of Environmental Engineering, 4, 1117. https://doi.org/10.5923/j.ajee.20140401.03Google Scholar
Funes, I. G. A., Peralta, M. E., Pettinari, G. R., Carlosb, L., & Paroloa, M. E. (2020). Facile modification of montmorillonite by intercalation and grafting: The study of the binding mechanisms of a quaternary alkylammonium surfactant. Applied Clay Science, 196, 105750 (1–8). https://doi.org/10.1016/j.clay.2020.105738Google Scholar
Gomri, F., Finqueneisel, G., Zimny, T., Korili, S. A., Gil, A., & Boutahala, M. (2018). Adsorption of Rhodamine 6G and humic acids on composite bentonite-alginate in single and binary systems. Applied Water Science, 8, 156 (1–10). https://doi.org/10.1007/s13201-018-0823-6CrossRefGoogle Scholar
Gregg, S. J., & Sing, K. S. W. (1982). Adsorption, Surface Area and Porosity, 2nd Edition. Academic Press, New York, Chapters 2 and 3. https://doi.org/10.1002/bbpc.19820861019Google Scholar
He, H., Zhou, Q., Martens, W. N., Kloprogge, T. J., Yuan, P., Xi, Y., Zhu, J., & Frost, R. L. (2006a). Microstructure of HDTMA+-modified montmorillonite and its influence on sorption charcteristics. Clays and Clay Minerals, 54, 689696. https://doi.org/10.1346/CCMN.2006.0540604CrossRefGoogle Scholar
He, H., Frost, R. L., Bostrom, T., Yuan, P., Duong, L., Yang, D., Xi, Y., & Kloprogge, T. J. (2006b). Changes in the morphology of organoclays with HDTMA+ surfactant loading. Applied Clay Science, 31, 262271. https://doi.org/10.1016/j.clay.2005.10.011CrossRefGoogle Scholar
He, H., Ma, Y., Zhu, J., Yuan, P., & Qing, Y. (2010). Organoclays prepared from montmorillonites with different cation exchange capacity and surfactant configuration. Applied Clay Science, 48, 6772. https://doi.org/10.1016/j.clay.2009.11.024CrossRefGoogle Scholar
Jović-Jovičić, N., Milutinović-Nikolić, A., Banković, P., Mojović, Z., Žunić, M., Gržetić, I., & Jovanović, D. (2010). Organo-inorganic bentonite for simultaneous adsorption of Acid Orange 10 and lead ions. Applied Clay Science, 47, 452456. https://doi.org/10.1016/j.clay.2009.11.005CrossRefGoogle Scholar
Khaorapapong, N. & Ogawa, M. (2011). Solid-state intercalation of organic and inorganic substances in smectites. Clay Science, 15, 147159. https://doi.org/10.11362/jcssjclayscience.15.4_147Google Scholar
Khumchoo, N., Khaorapapong, N., Ontam, A., Intachai, A., & Ogawa, M. (2016). Efficient photodegradation of organics in acidic solution by ZnO-smectite hybrids. European Journal of Inorganic Chemistry, 3157–3162. https://doi.org/10.1002/ejic.201600252CrossRefGoogle Scholar
Koswojo, R., Utomo, R. P., Ju, Y.-H., Ayucitra, A., Soetaredjo, F. E., Sunarso, J., & Ismadji, S. (2010). Acid Green 25 removal from wastewater by organo-bentonite from Pacitan. Applied Clay Science, 48, 8186. https://doi.org/10.1016/j.clay.2009.11.023CrossRefGoogle Scholar
Kurniawan, A., Sutiono, H., Ju, Y.-H., Soetaredjo, F. E., Ayucitra, A., Yudha, A., & Ismadji, S. (2011). Utilization of rarasaponin natural surfactant for organo-bentonite preparation: Application for methylene blue removal from aqueous effluent. Microporous and Mesoporous Materials, 142, 184193. https://doi.org/10.1016/j.micromeso.2010.11.032CrossRefGoogle Scholar
Lagaly, G. (1986). Interaction of alkylamines with different types of layered compounds. Solid State Ionics, 22, 43–51. https://doi.org/10.1016/0167-2738(86)90057-3CrossRefGoogle Scholar
Lagaly, G., & Dékany, I. (2006). Adsorption on hydrophobized surfaces: clusters and self-organization. Advances in Colloid and Interface Science, 114–115, 189204. https://doi.org/10.1016/j.cis.2004.07.015Google Scholar
Lagaly, G., & Ziesmer, S. (2003). Colloid chemistry of clay minerals: the coagulation of montmorillonite dispersions. Advances in Colloid and Interface Science, 100–102, 105128. https://doi.org/10.1016/S0001-8686(02)00064-7CrossRefGoogle Scholar
Lagaly, G., Ogawa, M., & Dékány, I. (2006). Clay mineral organic intercalations. In Bergaya, F., Theng, B. K. G., & Lagaly, G. (Eds.), Handbook of Clay Science, Developments in Clay Science, Vol. 1 (pp. 309377). Elsevier Science.Google Scholar
Leofantia, G., Padovan, M., Tozzola, G., & Venturelli, B. (1998). Surface area and pore texture of catalysts. Catalysis Today, 41, 207219. https://doi.org/10.1016/S0920-5861(98)00050-9CrossRefGoogle Scholar
Li, Z., Potter, N., Rasmussen, J., Weng, J., & Lv, G. (2018). Removal of rhodamine 6G with different types of clay minerals. Chemosphere, 202, 127135. https://doi.org/10.1016/j.chemosphere.2018.03.071CrossRefGoogle ScholarPubMed
Madejová, J., Barlog, M., Luboš, J., Slaný, M., & Pálková, H. (2021). Comparative study of alkylammonium- and alkylphosphonium-based analogues of organo-montmorillonites. Applied Clay Science, 200, 105894 (1–10). https://doi.org/10.1016/j.clay.2020.105894CrossRefGoogle Scholar
Navarathna, C. M., Dewage, N. B., Karunanayake, A. G., Farmer, E. L., Perez, F., Hassan, E. B., Mlsna, T. E., & Pittman, C. U. (2020). Rhodamine B adsorptive removal and photocatalytic degradation on MIL-53-Fe MOF/magnetic magnetite/biochar composites. Journal of Inorganic and Organometallic Polymers and Materials, 30, 214229. https://doi.org/10.1007/s10904-019-01322-wCrossRefGoogle Scholar
Ogawa, M. (2004). Photoprocess in clay-organic complexes. In Auerbach, S. M., Carrado, K. A., & Dutta, P. K. (Eds.), Handbook of Layered Materials (pp. 191260). Marcel Dekker. https://doi.org/10.1201/9780203021354.CH5Google Scholar
Okada, T., Ide, Y., & Ogawa, M. (2012). Organic–inorganic hybrids based on ultrathin oxide layers: designed nanostructures for molecular recognition. Chemistry – An Asian Journal, 7, 19801992. https://doi.org/10.1002/asia.201101015CrossRefGoogle ScholarPubMed
Okada, T., Seki, Y., & Ogawa, M. (2014). Designed nanostructures of clay for controlled adsorption of organic compounds. Journal of Nanoscience Nanotechnology, 14, 21212134. https://doi.org/10.1166/jnn.2014.8597CrossRefGoogle ScholarPubMed
Piscitelli, F., Scamardella, A. M., Romeo, V., Lavorgna, M., Barra, G., & Amendola, E. (2012). Epoxy composites based on aminosilylated MMT: The role of interfaces and clay morphology. Journal of Applied Polymer Science, 124, 616628. https://doi.org/10.1002/app.35015CrossRefGoogle Scholar
Ren, H., Kulkarni, D. D., Kodiyath, R., Xu, W., Choi, I., & Tsukruk, V. V. (2014). Competitive adsorption of dopamine and rhodamine 6G on the surface of graphene oxide. ACS Applied Materials & Interfaces, 6, 24592470. https://doi.org/10.1021/am404881pCrossRefGoogle ScholarPubMed
Ryu, H.-J., Hanga, N. T., Lee, J.-H., Choi, J. Y., Choi, G., & Choy, J.-H. (2020). Effect of organo-smectite clays on the mechanical properties and thermal stability of EVA nanocomposites. Applied Clay Science, 196, 105750 (1–8). https://doi.org/10.1016/j.clay.2020.105750CrossRefGoogle Scholar
Salam, M. A., Abukhadra, M. R., & Alyaa Adlii, A. (2020). Insight into the adsorption and photocatalytic behaviors of an organo-ben-tonite/Co3O4 green nanocomposite for malachite green synthetic dye and Cr(VI) metal ions: Application and mechanisms. ACS Omega, 5, 27662778. https://doi.org/10.1021/acsomega.9b03411CrossRefGoogle ScholarPubMed
Salleres, S., López Arbeloa, F., Martínez, V., Arbeloa, T., & López Arbeloa, I. (2008). Adsorption of fluorescent R6G dye into organophilic C12TMA laponite films. Journal of Colloid and Interface Science, 321, 212219. https://doi.org/10.1016/j.jcis.2007.12.049CrossRefGoogle ScholarPubMed
Shen, K., & Gondal, M. A. (2017). Removal of hazardous Rhodamine dye from water by adsorption onto exhausted coffee ground. Journal of Saudi Chemical Society, 21, S120–S127. https://doi.org/10.1016/j.jscs.2013.11.005CrossRefGoogle Scholar
Shi, H., Lan, T., & Pinnavaia, T. J. (1996). Interfacial effects on the reinforcement properties of polymer-organoclay nanocomposites. Chemical Materials, 8, 15841587. https://doi.org/10.1021/cm960227mCrossRefGoogle Scholar
Sigüenza, C., Galera, P., Otero-Aenlle, E., & González-Díaz, P. F. (1981). Vibrational study of some alkylamine hydrochlorides. Spectrochimica Acta A, 37, 459460. https://doi.org/10.1016/0584-8539(81)80122-5CrossRefGoogle Scholar
Sreelatha, G., & Padmaja, P. (2008). Study of removal of cationic dyes using palm shell powder as adsorbent. Journal of Environmental Protection Science, 2, 6371 https://aes.asia.edu.tw/Issues/JEPS2008/SreelathaG2008.pdfGoogle Scholar
Suwunwong, T., Patho, P., Choto, P., & Phoungthong, K. (2020). Enhancement the rhodamine 6G adsorption property on Fe3O4-composited biochar derived from rice husk. Materials Research Express, 7, 015518 (1–13). https://doi.org/10.1088/2053-1591/ab6767CrossRefGoogle Scholar
Theng, B. K. G. (1974). The Chemistry of Clay-Organic Reactions. Adam Hilger.Google Scholar
Vanamudan, A., & Pamidimukkala, P. (2015). Chitosan, nanoclay and chitosan–nanoclay composite as adsorbentsfor Rhodamine-6G and the resulting optical properties. International Journal of Biological Macromolecule, 74, 127135. https://doi.org/10.1016/j.ijbiomac.2014.11.009CrossRefGoogle ScholarPubMed
Wang, P., Cheng, M., & Zhang, Z. (2014). On different photodecom-position behaviors of rhodamine B on laponite and montmorillonite clay under visible light irradiation. Journal of Saudi Chemical Society, 18, 308316. https://doi.org/10.1016/j.jscs.2013.11.006.CrossRefGoogle Scholar
Whittingham, M. S. (1982). Intercalation Chemistry: an introduction. In Whittingham, M. S. & Jacobson, A. J. (Eds.), Intercalation Chemistry (pp. 118). Academic Press.Google Scholar
Xi, Y., Martens, W., He, H., & Frost, R. L. (2005). Thermogravimetric analysis of organoclays intercalated with the surfactant octadecyltrimethylammonium bromide. Journal of Thermal Analysis and Calorimetry, 81, 9197. https://doi.org/10.1007/s10973-005-0750-2CrossRefGoogle Scholar
Xiao, H., Dai, W., Kan, Y., Clearfield, A., & Liang, H. (2015). Amineintercalated α-zirconium phosphates as lubricant additives. Applied Surfaces Science, 329, 384389. https://doi.org/10.1016/j.apsusc.2014.12.061CrossRefGoogle Scholar
Yan-Ping, C., Rena, C., Yanga, Q., Zhanga, Z. Y., Donga, L. J., Xing-Guo, C., & De-Sheng, X. (2011). Preparation and characterization of hexadecyl functionalized magnetic silica nanoparticles and its application in rhodamine 6G removal. Applied Surface Science, 257, 86108616. https://doi.org/10.1016/j.apsusc.2011.05.031Google Scholar
Yoshimura, K., Machida, S., & Masuda, F. (1980). Biodegradation of long chain alkylamines. Journal of the American Oil Chemists' Society, 57, 238241. https://doi.org/10.1007/BF02673948CrossRefGoogle Scholar
Zhu, R., Zhu, L., Zhu, J., & Xu, L. (2008). Structure of cetyltrimethylammonium intercalated hydrobiotite. Applied Clay Science, 42, 224231. https://doi.org/10.1016/j.clay.2007.12.004CrossRefGoogle Scholar
Zhu, R., Zhou, Q., Zhu, J., Xi, Y., & He, H. (2015). Organo-clays as sorbents of hydrophobic organic contaminants: Sorptive characteristics and approaches to enhancing sorption capacity. Clays and Clay Minerals, 63, 199221. https://doi.org/10.1346/CCMN.2015.0630304CrossRefGoogle Scholar
Supplementary material: File

Intachai et al. supplementary material
Download undefined(File)
File 220.2 KB