Hostname: page-component-77c89778f8-cnmwb Total loading time: 0 Render date: 2024-07-22T06:18:48.599Z Has data issue: false hasContentIssue false

On Dehydration of Bound Water of Sepiolite

Published online by Cambridge University Press:  01 July 2024

Hiroshi Nagata
Affiliation:
Geological and Mineralogical Institute, Faculty of Science, Tokyo University of Education, Tokyo, Japan
Susumu Shimoda
Affiliation:
Geological and Mineralogical Institute, Faculty of Science, Tokyo University of Education, Tokyo, Japan
Toshio Sudo
Affiliation:
Geological and Mineralogical Institute, Faculty of Science, Tokyo University of Education, Tokyo, Japan

Abstract

Bound water of sepiolite dehydrates in two steps in the temperature range of 250-650°C, as shown in the TG-curve. These steps are described here as steps II and III. At step II, half of the bound water is removed; other half at step III. From step II to III, discontinuous changes are confirmed in such properties as activation energy of dehydration, a-dimension, axial ratio, and intensities and spacings of X-ray powder reflections. A structural state at step II may be recognized as a distinct phase in the dehydration process.

Résumé

Résumé

L’eau liée de la sépiolite part en deux stades dans le domaine de températures de 250-650°C, comme le montrent les courbes d’ATG. Les étapes sont décrites ici comme les stades II et III. Au stade II. la moitié de l’eau liée est éliminée; l’autre moitié est éliminée au stade III. Du stade II au stade III, des changements discontinus sont confirmés dans des propriétés telles que l’énergie d’activation de la déshydratation, la dimension a. le rapport axial, les intensités et les espacements des diagrammes de diffraction X de poudre. Un état structural au stade II peut être reconnu comme une phase distincte au cours du processus de déshydratation.

Kurzreferat

Kurzreferat

Gebundenes Wasser wird von Sepiolit in zwei Stufen im Temperaturbereich von 250-600°C abgegeben, wie an TG-Kurven gezeigt wird. Diese Stufen werden hier als Stufen II und III bezeichnet. Bei Stufe II wird die Hälfte des gebundenen Wassers entfernt, die andere Hälfte bei Stufe III. Zwischen Stufe II und III werden diskontinuierliche Veränderungen in solchen Eigenschaften wie Aktivierungsenergie der Dehydratisierung, a-Dimension, Achsenverhältnis und den Intensitäten und Abständen der Röntgenpulverreflexe festgestellt. Der Strukturzustand bei Stufe II kann als eine bestimmte Phase im Entwäasserungsprozeß angesehen werden.

Резюме

Резюме

Связанная вода сепиолитов дегидратируется по двум этапам в пределах температур от 250 до 650°С, как показано на кривой TG. Эти этапы мы называем ступенями II и III. На II ступени удаляется половина связанной воды, а другая половина на III. От II ступени до III, подтверждаются прерывистые изменения в таких свойствах как: энергия активации дегидратирования, я-размер, отношение осей и интенсивности и расстояние между рентгеновскими отражениями на порошкограммах. Структурное состояние на ступени II можно считать определенной фазой процесса дегидратирования.

Type
Research Article
Copyright
Copyright © Clay Minerals Society 1974

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brauner, K. and Preisinger, A., (1956) Structur und Entstehung des Sepioliths Tschermaks min. petr. mitt. 6 120140.CrossRefGoogle Scholar
Brindley, G. W., (1959) X-ray and electron diffraction data for sepiolite Am. Mineralogist. 44 495500.Google Scholar
Cuillère, S. and Hénin, S. (1957) The Differential Thermal Investigation of Clay Minerals (Edited by Mackenzie, R. C.), Chap. IX. Mineralogical Society, London.Google Scholar
Calllère, S. and Hénin, S. (1961) The X-ray Identification and Crystal Structures of Clay Minerals (Edited by Brown, G.), 2nd Edn., Chap. VIII. Mineralogical Society, London.Google Scholar
Freeman, S. and Carroll, B., (1958) The application of thermoanalytical techniques to reaction kinetics. The thermo-gravimetric evaluation of the kinetics of the decomposition of calcium oxalate monohydrate J. Phys. Chem. 62 394397.CrossRefGoogle Scholar
Gard, J. A. and Follett, E. A. C., (1968) A structural scheme for palygorskite Clay Minerals 7 367369.CrossRefGoogle Scholar
Hayashi, H., Otsuka, R. and Imai, N., (1969) Infrared study of sepiolite and palygorskite on heating Am. Mineralogist 53 16131624.Google Scholar
Imai, N., Otsuka, R., Nakamura, T. and Inoue, H., (1966) A new occurrence of well crystallized sepiolite from Kuzuu District, Tochigi Prefecture, Central Japan Nendo Kagaku 6 3040 (In Japanese.).Google Scholar
Imai, N., Otsuka, R., Hayashi, H. and Kashide, H., (1969) Dehydration of palygorskite and sepiolite from the Kuzuu district, Tochigi Prefecture, Central Japan Proc. Int. Clay Conf., Tokyo 1 99108.Google Scholar
Kulbicki, G. and Grim, R. E., (1959) A new method for thermal dehydration studies of clay minerals Miner. Mag. 32 5362.Google Scholar
Martin-Vivaldi, J. L. and Cano-Ruiz, J., (1956) Contribution to the study of sepiolite: III. The dehydration process and the types of water molecules Clays and Clay Minerals 4 177180.Google Scholar
Martin-Vivaldi, J. L. and Hach-Ali, P. F. (1970) Differential Thermal Analysis (Edited by Mackenzie, R. C.), Vol. 1, Chap. 20. Academic Press, New York.Google Scholar
Martin-Vivaldi, J. L. and Robertson, S. (1971) The Electron Optical Investigation of Clays (Edited by Gard, J. A.), Chap. 8. Mineralogical Society, London.Google Scholar
Nagy, B. and Bradley, W. F., (1955) The structural scheme of sepiolite Am. Mineralogist. 40 885892.Google Scholar
Nathan, Y., (1969) Dehydration of palygorskite and sepiolite Proc. Int. Clay Conf, Tokyo 1 9198.Google Scholar
Otsuka, R., Imai, N. and Nishikawa, M., (1966) Dehydration of sepiolite from Akatani Mine, Niigata Prefecture, Japan Kogyo Kagaku Zasshi 69 16771680 10.1246/nikkashi1898.69.9_1677 (In Japanese.).CrossRefGoogle Scholar
Otsuka, R., Hayashi, H. and Shimoda, S., (1968) Infrared absorption spectra of sepiolite and palygorskite Memoirs of the School of Sci. and Engineering, Waseda Univ. 32 1324.Google Scholar
Otsuka, R., Hayashi, H. and Imai, N., (1970) Dehydration of sepiolite and palygorskite with special reference to the behavior of bound water Bull. Sci. and Eng. Research Lab. Waseda Univ. 47 5663 (In Japanese.).Google Scholar
Preisinger, A., (1959) X-ray study of the structure of sepiolite Clays and Clay Minerals 6 6167.Google Scholar
Preisinger, A., (1963) Sepiolite and related compounds: its stability and application Clays and Clay Minerals 10 365371.Google Scholar
Rautureau, M., Tchoubar, C. and Mering, J., (1972) Analyse structurale de la sepiolite a partir des donnes de la diffraction electronique Proc. Int. Clay Conf., Madrid 1 153159.Google Scholar
Zvyagin, B. B. (1967) Electron Diffraction Analysis of Clay Mineral Structures (Translated by Lyse, S.). Plenum Press, New York.CrossRefGoogle Scholar