Hostname: page-component-84b7d79bbc-tsvsl Total loading time: 0 Render date: 2024-07-26T10:31:39.475Z Has data issue: false hasContentIssue false

Selective Sorption and Fixation of Cations by Clay Minerals: A Review

Published online by Cambridge University Press:  01 July 2024

B. L. Sawhney*
Affiliation:
The Connecticut Agricultural Experiment Station, New Haven, Conn. 06504, U.S.A.

Abstract

Investigations concerning selective sorption and fixation of K and similar cations by clay minerals and soil clays and the mechanisms of these reactions are reviewed. In particular, recent observations on selective sorption of these ions in dilute solutions by weathered micas and vermiculite in relation to the interlayer structures are discussed in detail. Also, implications of the resistance to weathering of small mica particles to cation selectivity by soils are described. Despite the increased understanding of sorption and fixation reactions, the following aspects remain unclear.

First, the mechanism of the collapse of alternate layers in vermiculite on K or Cs sorption has not been unequivocally established. Second, factors that impart stability to the central core of mica particles so that K extraction becomes progressively difficult are not known. Third, inability of Ca or Mg ions to expand interlayers of Cs-saturated vermiculite in contrast to K-saturated vermiculite is not completely understood.

Résumé

Résumé

On passe en revue les recherches concernant la sorption sélective et la fixation de K et de cations similaires par les minéraux argileux et les argiles des sols ainsi que les recherches concernant les mécanismes de ces réactions. En particulier, des observations récentes sur la sorption sélective de ces ions en solutions diluées par les micas altéres et la vermiculite, en liaison avec les structures interfeuillets, sont discutées en détail. De même, on décrit les implications de la résistance à l’altération de petites particules de mica dans la sélectivité des sols pour le cation. En dépit d’une amélioration dans la compréhension des réactions de sorption et de fixation, les points suivants sont toujours mal éclaircis.

En premier lieu, le mécanisme de la fermeture de couches alternées dans la vermiculite lors de la sorption de K ou Cs n’a pas été établi sans équivoque. En second lieu, les facteurs qui confèrent la stabilité au noyau central des particules de mica, si bien que l’extraction de K devient de plus en plus difficile, ne sont pas connus. En troisième lieu, l’inaptitude des ions Ca ou Mg à ouvrir les espaces interfeuillets de vermiculite saturée par le Cs, ce qui contraste avec le comportement de la vermiculite saturée par le K, n’est pas complètement comprise.

Kurzreferat

Kurzreferat

Es werden Untersuchungen über die selektive Sorption und Fixierung von K und ähnlichen Kationen durch Tonminerale und Bodentone sowie die Mechanismen dieser Reaktionen überprüft. Insbesonders werden neuere Beobachtungen über selektive Sorption dieser Ionen in verdünnten Lösungen durch verwitterte Glimmer und Vermiculite in bezug auf die Zwischenschichtgefüge im Einzelnen erörtert. Ferner wird die Bedeutung des Widerstandes gegen Verwitterung kleiner Glimmerteilchen für die Kationenselektivität der Böden beschrieben. Ungeachtet des besseren Verständnisses der Sorptions-und Fixierungsreaktionen, sind die folgenden Aspekte weiter unklar.

Erstens ist der Mechanismus des Zusammenbruchs alternierender Schichten im Vermiculit bei K oder Cs Sorption nicht eindeutig festgelegt worden. Zweitens sind die Faktoren, die dem inneren Kern von Glimmerteilchen Stabilität verleihen, so dass die K-Extraktion fortschreitend schwieriger wird nicht bekannt. Drittens ist die Unfähigkeit von Ca oder Mg Ionen die Zwischenschichten von Cs-gesättigtem Vermiculit im Gegensatz zum K-gesättigten Vermiculit auszuweiten nicht ganz verständlich.

Резюме

Резюме

Дан обзор исследований, посвященных селективному поглощению и фиксации К и аналогичных катионов глинистыми минералами и почвенными глинами, а также механизму подобных реакций. В частности, детально рассматриваются недавно проведенные исследования по селективному поглощению этих катионов в разбавленных растворах выветрелыми слюдами и вермикулитом с разной структурой межслоевого пространства. Стойкость к выветриванию небольших частиц слюды объясняется селективностью почв по отношению к катионам. Однако отмечается, что несмотря на все углубляющееся понимание механизма поглощения и фиксации остаются неясными следующие аспекты.

Во-первых, однозначно не установлен механизм сжатия чередующихся слоев в вермикулите в результате поглощения К или Ca. Во-вторых, до сих пор не выяснены факторы, определяющие устойчивость центральных частей глинистых частиц, благодаря которым удаление К становится все более и более затруднительным. В-третьих, полностью не понята неспособность ионов Ca или Mg вызывать разбухание межслоевых промежутков Cs-насыщенных вермикулитов в противоположность их действию на K-насыщенные вермикулиты.

Type
Research Article
Copyright
Copyright © 1972, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barshad, I., (1948) Vermiculite and its relation to biotite as revealed by base exchange reactions, X-ray analyses, differential thermal curves, and water content Am. Mineralogist 33 655678.Google Scholar
Barshad, I., (1950) The effect of the interlayer cations on the expansion of the mica type of crystal lattice Am. Mineralogist 35 225238.Google Scholar
Bassett, W. A., (1959) The origin of vermiculite deposit at Libby, Montana Am. Mineralogist 44 282299.Google Scholar
Bolt, G. H., Sumner, M. E. and Kamphorst, A., (1963) A study of the equilibria between three categories of potassium in an illitic soil Soil Sci. Soc. Am. Proc. 27 294299.CrossRefGoogle Scholar
Boyle, J. R., Voigt, G. K. and Sawhney, B. L., (1967) Biotite flakes: Alteration by chemical and biological treatment Science 155 193195.CrossRefGoogle ScholarPubMed
Brown, G. and Newman, A. C. D., (1970) Cation exchange properties of micas-III. Release of potassium sorbed by potassium-depleted micas Clay Minerals 8 273278.CrossRefGoogle Scholar
Coleman, N. T., Craig, D. and Lewis, R. J., (1963) Ion-exchange reactions of cesium Soil Sci. Soc. Am. Proc. 27 287289.CrossRefGoogle Scholar
Coleman, N. T. and LeRoux, F. H., (1965) Ion-exchange displacement of cesium from soil vermiculite Soil Sci. 99 243250.CrossRefGoogle Scholar
Dolcater, D. L., Lotse, E. G., Syers, J. K. and Jackson, M. L., (1968) Cation exchange selectivity of some clay-sized minerals and soil materials Soil Sci. Soc. Am. Proc. 32 795798.CrossRefGoogle Scholar
Farmer, V. C. and Wilson, M. J., (1970) Experimental conversion of biotite to hydrobiotite Nature 226 841842.CrossRefGoogle ScholarPubMed
Hill, D. E. and Sawhney, B. L., (1969) Electron micro-probe analysis of thin sections of soils to observe loci of cation exchange Soil Sci. Soc. Am. Proc. 33 531534.CrossRefGoogle Scholar
Jacobs, D. G. and Tamura, T., (1960) The mechanism of ion fixation using radio-isotope techniques Trans. Int. Congr. Soil Sci. 2 206214.Google Scholar
Jackson, M. L. and Sherman, G. D., (1953) Chemical weathering of minerals in soils Advan. Agron. 5 219318.CrossRefGoogle Scholar
Jackson, M. L., (1963) Interlayering of expansible layer silicates in soils by chemical weathering Clays and Clay Minerals 11 2946.Google Scholar
Keay, J. and Wild, A., (1961) The kinetics of cation exchange in vermiculite Soil Sci. 92 5460.CrossRefGoogle Scholar
Kittrick, J. A., (1966) Forces involved in ion fixation by vermiculite SoilSci. Soc. Am. Proc. 30 801803.CrossRefGoogle Scholar
Krishnamoorthy, C. and Overstreet, R., (1950) An experimental evaluation of ion exchange relationships Soil Sci. 69 4153.CrossRefGoogle Scholar
Klechkovsky, V. M., Sokolova, L. N. and Tselishcheva, G. N., (1959) The sorption of microquantities of strontium and cesium in soils Progress in Nuclear Energy 12 486499.Google Scholar
LeRoux, J. and Rich, C. I., (1969) Ion selectivity of micas as influenced by degree of potassium depletion Soil Sci. Soc.Am. Proc. 33 684690.CrossRefGoogle Scholar
LeRoux, J., Rich, C. I. and Ribbe, P. H., (1970) Ion selectivity by weathered micas as determined by electron microprobe analysis Clays and Clay Minerals 18 333338.CrossRefGoogle Scholar
Marshall, C. E. and Garcia, G., (1959) Exchange equilibria in a carboxylic resin and in Attapulgite clay J. Phys. Chem. 63 16631666.CrossRefGoogle Scholar
Marshall, C. E. and McDowell, L. L., (1965) The surface reactivity of micas Soil Sci. 99 115131.CrossRefGoogle Scholar
Mortland, M. M., (1958) Kinetics of potassium release from biotite Soil Sci. Soc. Am. Proc. 22 503508.CrossRefGoogle Scholar
Mortland, M. M. and Ellis, B. G., (1959) Release of fixed potassium as a diffusion controlled process Soil Sci. Soc.Am. Proc. 23 363364.CrossRefGoogle Scholar
Mortland, M. M. and Lawton, K., (1961) Relationships between particle size and potassium release from biotite and its analogues Soil Sci. Soc. Am. Proc. 25 473476.CrossRefGoogle Scholar
Newman, A. C. D. and Brown, G., (1966) Chemical changes during the alteration of micas Clay Minerals 6 297310.CrossRefGoogle Scholar
Nishita, H., Taylor, P., Alexander, G. V. and Larson, K. H., (1962) Influence of stable Cs and K on the reactions of 137Cs and 42K in soils and clay minerals SoilSci. 94 187197.Google Scholar
Norrish, K., (1954) The swelling of montmorillonite Disc. Faraday Soc. 18 120134.CrossRefGoogle Scholar
Ormsby, W. C., Schartsis, J. M. and Woodside, K. H., (1962) Exchange behaviour of kaolins of varying degrees of crystallinity J. Am. Ceram. Soc. 45 361366.CrossRefGoogle Scholar
Page, J. B. and Baver, L. D., (1940) Ionic size in relation to fixation of cations by colloidal clay Soil Sci. Soc. Am. Proc. 4 150155.CrossRefGoogle Scholar
Radoslovich, E. W., (1962) The cell dimensions and symmetry of layer lattice silicates — II. Regression relations Am. Mineralogist 47 617636.Google Scholar
Raman, K. V. and Jackson, M. L., (1964) Vermiculite surface morphology Clays and Clay Minerals 12 423429.Google Scholar
Raman, K. V. and Jackson, M. L., (1966) Layer charge relations in clay minerals of micaceous soils and sediments Clays and Clay Minerals 14 5368.CrossRefGoogle Scholar
Rausell-Colom, J. A., Sweatman, T. R., Wells, C. B., Norrish, K., Hallsworth, E. G. and Crawford, D. V., (1965) Studies in the artificial weathering of mica Experimental Pedology London Butter-worths 4072.Google Scholar
Reed, M. G. and Scott, A. D., (1962) Kinetics of potassium release from biotite and muscovite in sodium tetraphenylboron solutions Soil Sci. Soc. Am. Proc. 26 437440.CrossRefGoogle Scholar
Rhoades, J. D. and Coleman, N. T., (1967) Interstratification in vermiculite and biotite produced by potassium sorption —I. Evaluation by simple X-ray diffraction pattern inspection Soil Sci. Soc. Am. Proc. 31 366372.CrossRefGoogle Scholar
Von Reichenbach, H. G., (1968) Cation exchange in the interlayers of expansible layer silicates Clay Minerals 7 331341.CrossRefGoogle Scholar
Von Reichenbach, H. G. and Rich, C. I., (1969) Potassium release from muscovite as influenced by particle size Clays and Clay Minerals 17 2329.CrossRefGoogle Scholar
Reitemeier, R. F., (1951) The chemistry of soil potassium Advan. Agron. 3 113164.CrossRefGoogle Scholar
Rich, C. I., (1964) Effect of cation size and pH on potassium exchange in Nason soil Soil Sci. 98 100106.CrossRefGoogle Scholar
Rich, C. I. and Black, W. R., (1964) Potassium exchange as affected by cation size, pH, and mineral structure Soil Sci. 97 384390.CrossRefGoogle Scholar
Rich, C. I., Kilmer, V. J., Younts, S. E. and Brady, N. C., (1968) Mineralogy of soil potassium The Role of Potassium in Agriculture Madison, Wise American Society of Agronomy, Inc. 79108.Google Scholar
Sawhney, B. L., (1964) Sorption and fixation of micro-quantities of Cs by clay minerals: effect of saturating cations SoilSci. Soc.Am. Proc. 28 183186.CrossRefGoogle Scholar
Sawhney, B. L. and Frink, C. R., (1964) Sorption of cesium from dilute solutions by soil clays Trans. 8th Int. Cong. Soil Sci. Bucharest 3 423431.Google Scholar
Sawhney, B. L., (1965) Sorption of cesium from dilute solutions SoilSci. Soc.Am. Proc. 29 2528.CrossRefGoogle Scholar
Sawhney, B. L., (1967) Cesium sorption in relation to lattice spacing and cation exchange capacity of biotite SoilSci. Soc.Am. Proc. 31 181183.CrossRefGoogle Scholar
Sawhney, B. L., (1967) Interstratification in vermiculite Clays and Clay Minerals 15 7584.CrossRefGoogle Scholar
Sawhney, B. L., (1969) Regularity of interstratification as affected by charge density in layer silicates Soil Sci. Soc. Am. Proc. 33 4246.CrossRefGoogle Scholar
Sawhney, B. L., (1969) Cesium uptake by layer silicates: effect on interlayer collapse and cation exchange capacity Proc. Int. Clay Conf. 1 605611.Google Scholar
Sawhney, B. L., (1970) Potassium and cesium ion selectivity in relation to clay mineral structure Clays and Clay Minerals 18 4752.CrossRefGoogle Scholar
Sawhney, B. L. and Voigt, G. K., (1969) Chemical and biological weathering in vermiculite from Transvaal Soil Sci. Soc. Am. Proc. 33 625629.CrossRefGoogle Scholar
Schulz, R. K., Overstreet, R. and Barshad, I., (1960) On the soil chemistry of 137Cs Soil Sci. 89 1627.CrossRefGoogle Scholar
Schwertmann, U., (1962) Eigenschaften und Bildung aufweitbarer (quellbarer) Dreischicht-Tonminerale in Boden aus Sedimenten Beitrage zur Mineralogie und Petrographies 199209.CrossRefGoogle Scholar
Schwertmann, U., (1962) Die selective Kationen sorption der Tonfraktion einiger Boden aus Sedimenten Z. Pflanzenernahr Dung Bodenk 97 925.CrossRefGoogle Scholar
Von Schouwenburg, J. C. H. and Schuffeien, A. C., (1963) Potassium exchange behaviour of an illite Neth.J. Agric. Sci. 11 1322.Google Scholar
Scott, A. D. and Smith, S. J., (1966) Susceptibility of interlayer potassium in micas to exchange with sodium Clays and Clay Minerals 14 6981.CrossRefGoogle Scholar
Scott, A. D., (1968) Effect of particle size on interlayer potassium exchange in micas Trans. Int. Cong. Soil Sci. Adelaide 2 649659.Google Scholar
Serratosa, J. M. and Bradley, W. F., (1958) Determination of the orientation of OH bond axes in layer silicates by infrared adsorption J. Phys. Chem. 62 11641167.CrossRefGoogle Scholar
Shainberg, I. and Kemper, W. D., (1966) Hydration status of adsorbed cations Soil Sci. Soc. Am. Proc. 30 707713.CrossRefGoogle Scholar
Stanford, G., (1948) Fixation of potassium in soils under moist conditions and on drying in relation to type of clay mineral Soil Sci. Soc. Am. Proc. 12 167171.CrossRefGoogle Scholar
Tamura, T. and Jacobs, D. G., (1960) Structural implications in cesium sorption Health Physics 2 391398.CrossRefGoogle ScholarPubMed
Tucker, B. M., (1967) The solubility of potassium from soil illites — III. Reactivity towards other ions Aust. J. Soil Res. 5 173190.CrossRefGoogle Scholar
Tucker, B. M., (1967) The solubility of potassium from soil illites —IV. Rate of reaction and exchange constants A ust. J. Soil Res. 5 191201.CrossRefGoogle Scholar
Walker, G. F., (1956) The diffusion of interlayer water in vermiculite Nature 177 239240.CrossRefGoogle Scholar
Walker, G. F., (1959) Diffusion of exchangeable cations in vermiculite Nature 184 13921394.CrossRefGoogle Scholar
Wear, J. I. and White, J. L., (1951) Potassium fixation in clay minerals as related to crystal structure Soil Sci. 71 114.CrossRefGoogle Scholar
Weed, S. B. and Leonard, R. A., (1968) Effect of K+-uptake by K+-depleted micas on the basal spacing Soil Sci. Soc. Am. Proc. 32 335340.CrossRefGoogle Scholar
Weir, A. H., (1965) Potassium retention in montmorillonite Clay Minerals 6 1722.CrossRefGoogle Scholar
Wells, C. B. and Norrish, K., (1968) Accelerated rates of release of interlayer potassium from micas Trans. Int. Congr. Soil Sci. 9th, Adelaide 2 683694.Google Scholar
Wiewiora, A. and Brindley, G. W., (1969) Potassium acetate intercalation in kaolinite and its removal; effect of material characteristics Proc. Int. Clay Conf., Tokyo 1 723733.Google Scholar
Wiklander, L., (1950) Fixation of potassium by clays saturated with different cations Soil Sci. 69 261268.CrossRefGoogle Scholar