Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-07-06T02:07:05.344Z Has data issue: false hasContentIssue false

The Structures of Ornithine-Vermiculite and 6-Aminohexanoic Acid-Vermiculite

Published online by Cambridge University Press:  01 July 2024

Abstract

Fourier syntheses have been used to establish the arrangement of organic molecules in the interlamellar regions of a 16.10 Å phase of ornithine-vermiculite and a 16.92 Å phase of 6-aminohexanoic acid-vermiculite. The organic cations form two layers parallel to the silicate surfaces in ornithine-vermiculite and in 6-aminohexanoic acid-vermiculite the organic cations form ascending and descending “stairs” from the silicate sheets.

Ornithine-vermiculite forms a true single layer polytype but by contrast 6-aminohexanoic acid-vermiculite is two-layered and has a true c axis of 34.09 Å. Since a two layered vermiculite was used as a starting material to prepare the organic complexes, exchangeable organic cations affect the stacking sequence of the silicate sheets.

Type
Research Article
Copyright
Copyright © 1976 The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Boder, G., Bednowitz, A. L. and Post, B. (1967) The crystal structure of ε-aminocaproic acid: Acta Cryst. 23, 482490.CrossRefGoogle Scholar
Brown, B. E. and Bailey, S. W. (1962) Chlorite polytypism—I. Regular and semi-random one layer structures: Am. Miner. 47, 819850.Google Scholar
Busing, W. R. and Levy, H. A. (1957) High-speed computation of the absorption correction for single crystal diffraction measurements: Acta. Cryst. 10, 180182.CrossRefGoogle Scholar
Busing, W. R., Martin, K. O. and Levy, H. A. (1962) ORFLS, A Fortran crystallographic least-squares program: Oak Ridge National Laboratory, Tennessee.CrossRefGoogle Scholar
Calle, C. de la, Suquet, H. and Pezerat, H. (1975) Glissement de feuillets accompagnant certains échanges cationiques dans les monocristaux de vermiculites: Bull. Gr. Fr. Arg. t. XXVII, 3149.Google Scholar
Chiba, A., Ueki, T., Ashida, T., Sasada, Y. and Kakuda, M. (1967) The crystal structure of L-ornithine hydrochloride: Acta. Cryst. 22, 863870.CrossRefGoogle Scholar
Iglesias, J. E. and Steinfink, H. (1974) A structural investigation of a vermiculite–piperidine complex: Clays & Clay Minerals 22, 9195.CrossRefGoogle Scholar
Kanamaru, E. and Vand, V. (1970). The crystal structure of a clay-organic complex of 6-aminohexanoic acid and vermiculite: Am. Miner. 55, 15501561.Google Scholar
Mathieson, A. McL. and Walker, G. F. (1954) Crystal structure of magnesium–vermiculite: Am. Miner. 39, 231255.Google Scholar
Mifsud, A., Fornés, V. and Rausell-Colom, J. A. (1970) Cationic complexes of vermiculite with L-ornithine: Reunion hispano-belga de minerales de la arcilla. Proc. Madrid pp. 121127Google Scholar
Raupach, M. and Janik, L. (1976) The orientation of ornithine and 6-aminohexanoic acid adsorbed on vermiculite from polarized i.r. ATR spectra. Clays & Clay Minerals 24, 127133.CrossRefGoogle Scholar
Raupach, M., Slade, P. G., Janik, L. and Radoslovich, E. W. (1975) A polarized i.r. and X-ray study of lysine–vermiculite: Clays & Clay Minerals 23, 181186.CrossRefGoogle Scholar
Rausell-Colom, J. A. and Fornés, V. (1974) Monodimensional Fourier analysis of some vermiculite-l-ornithine + complexes: Am. Miner. 59, 790798.Google Scholar