Hostname: page-component-84b7d79bbc-g78kv Total loading time: 0 Render date: 2024-07-25T14:38:00.337Z Has data issue: false hasContentIssue false

Synthesis and Swelling Properties of Saponites with Increasing Layer Charge

Published online by Cambridge University Press:  01 July 2024

H. Suquet*
Affiliation:
Laboratoire de Chimie des Solides, E.R. 133 C.N.R.S., Université Pierre et Marie Curie, 4 Place Jussieu, 75230, Paris Cedex 05, France
J. T. Iiyama*
Affiliation:
Laboratoire de Chimie des Solides, E.R. 133 C.N.R.S., Université Pierre et Marie Curie, 4 Place Jussieu, 75230, Paris Cedex 05, France
H. Kodama
Affiliation:
Laboratoire de Chimie des Solides, E.R. 133 C.N.R.S., Université Pierre et Marie Curie, 4 Place Jussieu, 75230, Paris Cedex 05, France
H. Pezerat
Affiliation:
Laboratoire de Chimie des Solides, E.R. 133 C.N.R.S., Université Pierre et Marie Curie, 4 Place Jussieu, 75230, Paris Cedex 05, France
*
*Centre de Recherche sur la Synthèse et Chimie des Minéraux, C.N.R.S., rue de la Ferollerie, 45045 Orléans Cedex, France.
Soil Research Institute, Department of Agriculture, Central Experimental Farm, Ottawa K1AOC6, Canada.

Abstract

Nine synthetic Na-saponites with charge densities varying between 0.33 and 1.0 have been prepared. Their swelling properties and structural organization in water, ethylene glycol and glycerol show discontinuities in the physico-chemical behaviour of these samples. The layer charge densities caused changes in swelling properties and structural organization of the minerals. These changes also depended upon the nature of the solvation liquid and the interlayer cation involved.

Electron diffraction patterns of the Ba-saponites showed no abnormal diffusion making honeycomblike patterns between Bragg reflections.

The results indicate criteria for estimating the layer charge of tetrahedrally substituted trioctahedral 2/1 phyllosilicates.

There is no upper limit until x = 1 for the layer charge x which is specific to the smectite-group. Consequently, the changes in the swelling properties observed when x = 0.5-0.6 and x = 0.8-0.9 come from the modifications of the interlayer structure, which are mainly a function of cation-liquid and silicate layer-liquid interactions. Consequently, there is an overlap between the saponite and the vermi-culite mineral groups.

Type
Research Article
Copyright
Copyright © Clay Minerals Society 1977

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alcover, J. F., Gatineau, L., Mering, J. and Kodama, H. (1974) The distribution of Ba cations in vermiculites and vermiculitized micas: Clays & Clay Minerals (in press).Google Scholar
Barshad, I. (1950) The effect of the interlayer cations in the expansion of the mica type of crystal lattice: Am. Miner. 35, 225238.Google Scholar
Barshad, I. (1954) Cation exchange in micaceous minerals: II—Replaceability of ammonium and potassium from vermiculite, biotite and montmorillonite: Soil Sci. 78, 5776.CrossRefGoogle Scholar
Besson, G. (1972) Etude par microdiffraction électronique des relations d'ordre–désordre dans les substitutions des phyllosilicates. Thèse 3e cycle, Orléans, France.Google Scholar
Besson, G., Tchoubar, C. et Mering, J. (1973) Relations d'ordre–désordre dans la répartition des substitutions des phyllosilicates 2/1 du groupe des smectites: Bull. grpe fr. Argiles 25, 155160.Google Scholar
Besson, G., Mifsud, A., Tchoubar, C. and Mering, J. (1974) Order and disorder relations in the distribution of the substitutions in smectites, illites and vermiculites: Clays & Clay Minerals 22, 379384.CrossRefGoogle Scholar
Bradley, W. F., Weiss, E. J. and Rowland, R. A. (1963) A glycol sodium vermiculite complex: Clays & Clay Minerals 10, 117122.Google Scholar
Brindley, G. W. and MacEwan, D. M. C. (1953) Structural mineralogy of ceramic clays. Symp. Brit. Ceramic Soc. Stoke on Trent, pp. 1559.Google Scholar
Carman, J. H. (1974) Synthetic sodium phlogopite and its two hydrates stabilities, properties and mineralogic implications: Am. Miner. 59, 261273.Google Scholar
Chassin, P. (1972) Etude de la conformation de la molécule d'éthane 1–2 diol adsorbée sur les phyllites 2–1: Bull. grpe fr. Argiles 24, 7988.CrossRefGoogle Scholar
Calle, C. de la Suquet, H. and Pezerat, H. (1975) Glissement de feuillets accompagnant certains échanges cationiques dans les monocristaux de vermiculites: Bull. grpe fr. Argiles 27, 3149.CrossRefGoogle Scholar
Calle, C. de la Suquet, H., Dubernat, J. and Pezerat, H. (1977) Evolution of the structure of two-layer hydrates of high-charge vermiculites with the relative humidity: communication at the European Clay Mineral Conf., Oslo.Google Scholar
Glaeser, R. and Mering, J. (1967) Effet de chauffage sur les montmorillonites saturées de cations de petit rayon: C.r. hebd. Séan. Acad. Sci., Paris 275, 833835.Google Scholar
Glaeser, R. and Mering, J. (1975) Influence du taux de substitution isomorphique en couche tétraédrique sur les propriétés et l'organisation structurale des smectites dioctaédriques: Proc. 20ème Congrès International des argiles, Mexico, pp. 173183.Google Scholar
Harward, M. E. and Brindley, G. W. (1965) Swelling properties of synthetic smectites in relation to lattice substitutions: Clays & Clay Minerals 6, 209222.Google Scholar
Iiyama, J. T. and Roy, R. (1963): (a) Controlled synthesis of heteropolytypic (mixed-layer) clay minerals: Clays & Clay Minerals 10, 1–22. (b) Unusually stable saponite in system Na2O–MgO–Al2O3–SiO2: Clay Min. Bull. 5, 161171.CrossRefGoogle Scholar
Kodama, H. (1975) Diffuse scattering by X-rays and electrons in mica and mica-like minerals: Clay Mineralogy 481, 713.Google Scholar
Lagaly, G. and Weiss, A. (1969) Determination of the layer charge in mica type layer silicates. Proc. Int. Clay Conf., Tokyo, 6180.Google Scholar
MacEwan, D. M. C. (1948) Complexes of clays with inorganic compounds—I: Complex formation between montmorillonite and halloysite and certain organic liquids: Trans. Faraday Soc. 44, 349.CrossRefGoogle Scholar
Mering, J. and Pedro, G. (1967) Discussion à propos des critères de classification des phyllosilicates 2/1: Bull. grpe fr. Argiles 21, 130.Google Scholar
Reynolds, R. C. (1965) An X-ray study of an ethylene-glycol montmorillonite complex: Am. Miner. 50, 9901001.Google Scholar
Robert, M. (1975) Principes et détermination qualitative des minéraux argileux à l'aide des rayons X: Ann. agron. 26(4), 363399.Google Scholar
Roy, R. (1961) The preparation and properties of synthetic clay minerals: Colloque International du C.N.R.S. sur la Genèse et Synthèse des Argiles, Paris, pp. 8398.Google Scholar
Suquet, H., Calle, C. de la, and Pezerat, H. (1975) Swelling and structural organization of saponite: Clays & Clay Minerals 23, 19.CrossRefGoogle Scholar
Walker, G. F. (1958) Reactions of expanding lattice clay minerals with glycerol and ethylene glycol: Clay Min. Bull. 3, 302313.CrossRefGoogle Scholar
Warshaw, C. M. and Roy, R. (1961) The classification and a scheme for the identification of layer silicates: Bull. Geol. Soc. Am. 72, 14551472.CrossRefGoogle Scholar
Wear, J. I. and White, J. L. (1951) Potassium fixation in clay minerals as related to crystal structure: Soil Sci. 71, 114.CrossRefGoogle Scholar
Weaver, C. E. (1958) The effects and geologic significance of potassium “fixation” by expandable clay minerals derived from muscovite, biotite, chlorite and volcanic materials. Am. Miner. 43, 839861.Google Scholar
Weir, A. H. (1960) Relationship between physical properties structure and composition of smectites: Thesis, London University.Google Scholar