Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-18T18:57:23.487Z Has data issue: false hasContentIssue false

Thermal Reactions of Synthetic Hectorite

Published online by Cambridge University Press:  01 July 2024

J. M. Green
Affiliation:
Department of Ceramics with Refractories Technology, The University, Sheffield, England
K. J. D. Mackenzie
Affiliation:
Department of Ceramics with Refractories Technology, The University, Sheffield, England
J. H. Sharp
Affiliation:
Department of Ceramics with Refractories Technology, The University, Sheffield, England

Abstract

The thermal reaction sequence of a synthetic hectorite (Laponite CP) was studied by X-ray diffraction, i.r. spectroscopy and thermal analysis. Although most of the interlayer water is removed at 200°C, a smally steady weight loss occurs until dehydroxylation is complete at about 700°C, indicating that an anhydrous intermediate phase is not formed prior to dehydroxylation. Immediately after dehydroxylation, enstatite and cristobalite can be identified, but lithium silicates are formed only from lithium-saturated hectorite. Around 1200°C a glass is formed by reaction of the alkalis with cristobalite, and removal of silica from the enstatite produces some forsterite. An inhomogeneous mechanism of dehydroxylation is postulated by analogy with that proposed for talc.

Résumé

Résumé

La séquence de réaction thermique d’un hectorite synthétique (Laponite CP) a été étudiée par diffraction des rayons X, spectroscopic à l’infra-rouge et analyse thermique. Bien que la plus grande partie de l’eau entre les couches intermédiaires disparaisse à 200°C, il se produit une petite perte régulière de poids jusqu’à ce que la déshydroxylation soit complète à environ 700°C, ce qui indique qu’une phase intermédiaire anhydre ne s’est pas formée avant la déshydroxylation. Immédiatement après la déshydroxylation, on peut identifier de l’enstatite et de la cristobalite, mais les les silicates de lithium sont formés seulement à partir d’hectorite saturé au lithium. A environ 1200°C, un verre se forme par réaction de l’alkali avec la cristobalite et la disparition de silice de l’enstatite produit de la forsterite. Un méchanisme non homogène de déshydroxylation est postulé par analogie avec celui proposé pour le talc.

Kurzreferat

Kurzreferat

Die thermische Reaktionsfolge eines synthetischen Hektorits (Laponit CP) wurde durch Röntgenbeugung, Ultrarot-Spektroskopie und thermische Analyse studiert. Obgleich der Grossteil des Zwischenschichtwassers bei 200°C bereits entfernt ist, so findet doch ein geringer, stetiger Gewichtsverlust statt bis die Dehydroxylierung bei ungefähr 700°C komplett ist, was darauf hindeutet, dass es vor der Dehydroxylierung nicht zur Bildung einer wasserfreien Zwischenphase kommt. Unmittelbar nach der Dehydroxylierung können Enstatit und Cristobalit identifiziert werden, während sich Lithiumsilikate nur aus mit Lithium gesättigtem Hektorit bilden. Um 1200°C finder durch die Reaktion von Alkalien mit Cristobalit Glasbildung statt, und die Entfernung von Silizium dioxyd as dem Enstatit liefert Forsterit. Für die Dehydroxylierung wird ein inhomogener Mechanism, analog dem für Talk, vorgeschlagen.

Резюме

Резюме

Поведение синтетического гекторита при нагревании изучено методами рентгенографии, ИК-спектроскопии и термического анализа. Хотя большая часть воды удаляется при 200, небольшая, но постоянная потеря веса все же имеет место вплоть до полной дегидроксилизации при температуре примерно 700; это указывает на то, что до завершения дегидроксилизации не происходит образования никакой промежуточной безводной фазы. Немедленно после дегидроксилизации в остаточном продукте обнаруживаются энстатит и кристобалит, литиевые силикаты образуются только из Li-насышенного гекторита. При температуре примерно 1200 в результате взаимодействия щелочных ионов с кристобалитом образуется стекло, а удаление кремнезема из энстатита приводит к образованию небольших количеств форстерита. Предполагается, что обнаруженный негомогенный механизм дегидроксилизации аналогичен подобному механизму для талька.

Type
Research Article
Copyright
Copyright © 1970 The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Addison, W. E. and White, A. D. (1968) Spectroscopic evidence for the siting of lithium ions in a riebeckite: Mineral. Mag. 36, 743–5.Google Scholar
Bradley, W. F. and Grim, R. E. (1951) High temperature thermal effects of clay and related minerals: Am. Mineralogist 36, 182201.Google Scholar
Brindley, G. W. (1963) Crystallographic aspects of some decomposition and recrystallization reactions: Prog. Ceram. Sci. 3, 155.Google Scholar
Deer, W. A., Howie, R. A. and Zussman, J. (1962) Rock Forming Minerals, Vol. 3, p. 234. Longmans, London.Google Scholar
Farmer, V. C. (1958) The infrared spectra of talc, saponite and hectorite: Mineral. Mag. 31, 829845.Google Scholar
Fripiat, J. J. (1969) Summary review of the results obtained, OECD project on characterization of non-metallic minerals.Google Scholar
Fripiat, J. J., Rouxhet, P. and Jacobs, H. (1965) Proton derealization in micas: Am. Mineralogist 50, 19371958.Google Scholar
Fripiat, J. J. and Toussaint, F. (1960) Predehydroxylation state of kaolinite: Nature 186, 627628.CrossRefGoogle Scholar
Grim, R. E. and Kulbicki, G. (1961) Montmorillonite-high temperature reactions and classification: Am. Mineralogist 46, 1329–69.Google Scholar
Jennings, B. R., Plummer, E., Closs, W. J. and Jerrard, H. G. (1969) Size and shape of laponite (Type S) synthetic clay particles: J. Colloid Interface. Sci. 30, 134139.CrossRefGoogle Scholar
Launer, P. J. (1952) Infrared absorption spectra of minerals: Am. Mineralogist 37, 764784.Google Scholar
Lippincott, E. R., Van Valkenburg, A., Weir, C. E. and Bunting, E. N. (1958) Infrared studies on polymorphs of silicon dioxide and germanium dioxide: J. Res. Natl. Bur. Std. 61, 6170.CrossRefGoogle Scholar
Nakahira, M. and Kato, T. (1964) Thermal transformation of pyrophyllite and talc as revealed by X-ray and electron diffraction studies: Clays and Clay Minerals 12, 2127.Google Scholar
Saksena, B. D. (1961) Infrared absorption studies of some silicate structures: Trans. Faraday Soc. 57, 24255.CrossRefGoogle Scholar
Schmidt, E. R. and Heystek, H. (1953) A saponite from Krugersdorp District, Transvaal: Mineral. Mag. 30, 201210.Google Scholar
Vedder, W. and Wilkins, R. W. T. (1969) Dehydroxylation and rehydroxylation, oxidation and reduction of micas: Am. Mineralogist 54, 482509.Google Scholar
Wolf, R. G. (1963) Structural effects of kaolinite using infrared absorption: Am. Mineralogist 48, 390399.Google Scholar