Hostname: page-component-77c89778f8-cnmwb Total loading time: 0 Render date: 2024-07-18T21:25:56.689Z Has data issue: false hasContentIssue false

Thermal Study of Types of Water Associated with Clinoptilolite

Published online by Cambridge University Press:  01 July 2024

Gregory D. Knowlton
Affiliation:
Arizona State University, Tempe, Arizona 85281
Ted R. White
Affiliation:
Arizona State University, Tempe, Arizona 85281
H. Lawrence McKague
Affiliation:
Lawrence Livermore National Laboratory, Livermore, California 94550

Abstract

The identification and quantification of the water associated with powdered clinoptilolite and clinoptilolite-bearing tuffs were made using thermogravimetric, vacuum gravimetric, and differential scanning calorimetric techniques. Inflection points on thermogravimetric curves at approximately 80° and 170°C correspond to changes in the proportions of externally adsorbed water to loosely bound zeolitic water and loosely bound zeolitic water to tightly bound zeolitic water, respectively. These three types of water can be differentiated by temperatures and heats of dehydration obtained from differential scanning calorimetry. These temperatures and heats of hydration are 75 ± 10°C and 59.2 ± 5.9 kJ/mole H2O, 171 ± 2°C and 58.7 ± 6.1 kJ/mole H2O, and 271 ± 4°C and 78.7 ± 7.0 kJ/mole H2O for external water, loosely bound water, and tightly bound water, respectively. The ratio of loosely bound zeolitic water to tightly bound zeolitic water determined in this study is similar to that reported in the literature from structural determinations, indicating that the desorption properties of clinoptilolite are determined by the specific positions of the water molecules in the structure.

Резюме

Резюме

Идентификация и количественный анализ воды, связанной с порошковым клиноптилолитом и клиноптилолитовыми туфами, были получены при помощи термогравиметрической, вакуумогравиметрической и дифференциально-анализирующей калориметрической техник. Точки перегиба на термогравиметрических кривых при приблизительно 80° и 170°C соответствуют изменениям в пропорциях внешне адсорбированной воды к слабо связанной цеолитовой воде и слабо связанной цеолитовой воды к сильно связанной цеолитовой воде, соответственно. Эти три типа воды могут различаться по температурам и теплотам дегидратации, полученным по данным дифференциальной анализирующей калориметрии. Эти температуры и теплоты дегидратации равны: 75 ± 10°C и 59,2 ± 5,9 кдж/моль H2O, 171 ± 2°C и 58,7 ± 6,1 кдж/моль H2O, и 271 ± 4°C и 78,7 ± 7,0 кдж/моль H2O для внешней воды, слабо связанной воды и сильно связанной воды соответственно. Соотношение слабо связанной к сильно связанной цеолитовой воде, определенное в этой работе, является подобным к опубликованным в литературе на основании структурных определений, указывая на то, что десорбционные своиства клиноптилолита определяются характерными положениями молекул воды в структуре. [E.C.]

Resümee

Resümee

Die Identifizierung und Quantifizierung von Wasser, das mit gepulvertem Klinoptilolith und Klinoptilolith-haltigem Tuff assoziiert war, wurde mittels thermogravimetrischen, vakuumgravimetrisch-en, und differentialkalorimetrischen Methoden untersucht. Die Wendepunkte in den thermogravimetrischen Kurven bei ungefähr 80° und 170°C stimmen in den Größenordnungen mit Änderungen des an der Oberfläche adsorbierten Wassers und mit locker gebundenem zeolithischem Wasser überein sowie mit locker bis fest gebundenem zeolithischem Wasser. Diese drei Arten von Wasserbindung können mit Hilfe von Dehydratationstemperaturen und -wärmen, die aus der Differentialkalorimetrie gewonnen werden, unterschieden werden. Die Dehydratationstemperaturen und -wärmen betragen 75 ± 10°C und 59,2 ± 5,9 kJ/ Mol H2O, 171 ± 2°C und 58,7 ± 6,1 kJ/Mol H2O, und 271 ± 4°C und 78 ± 7,0 kJ/Mol H2O für Oberflächenwasser, locker gebundenes bzw. fest gebundenes Wasser. Das Verhältnis des locker gebundenen zeo-lithischen Wassers zum fest gebundenen zeolithischen Wasser, das in dieser Untersuchung bestimmt wurde, stimmt mit dem überein, das in der Literatur aus Strukturbestimmungen angegeben wird. Dies deutet darauf hin, daß die Desorptionseigenschaften von Klinoptilolith durch die spezifischen Lagen der Wassermoleküle in der Struktur bestimmt werden. [U.W.]

Résumé

Résumé

L'identification et la quantification d'eau associée avec la clinoptilolite poudrée et les tufs contenant de la clinoptilolite ont été entreprises par des techniques thermogravimètriques, gravimètriques au vide, et calorimétriques balayantes differentielles. Les points d'inflection sur les courbes thermogravimètriques à approximativement 80°C et 170°C correspondent à des changements dans les proportions d'eau adsorbée extérieurement à l'eau zéolitique lâchement liée, et d'eau zéolitique lâchement liée à l'eau zéo-litique fortement liée, respectivement. Ces trois types d'eau peuvent être différenciés par les températures et les chaleurs de déshydration obtenues de la calorimètrie balayante différentielle. Ces températures et ces chaleurs d'hydration sont respectivement pour l'eau externe, l'eau lâchement liée, et l'eau fortement liée, 75 ± 10°C et 59,2 ± 5,9 kJ/mole H2O, 171 ± 2°C et 58,7 ± 6,1 kJ/mole H2O, et 271 ± 4°C et 78,7 ± 7,0 kJ/mole H2O. La proportion d'eau zéolitique lâchement liée à l'eau zéolitique fortement liée déterminée dans cette étude est semblable à celle mentionnée dans la literature à partir de déterminations structurales, indiquant que les propriétés de désorption de la clinoptilolite sont déterminées par les positions spécifiques des molécules d'eau dans la structure. [D.J.]

Type
Research Article
Copyright
Copyright © 1981, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alberti, A., (1975) The crystal structure of two clinoptilolites Tschermaks Mineral. Petrogr. Mitt. 22 2537.CrossRefGoogle Scholar
Alietti, A., (1972) Polymorphism and crystal chemistry of heu-landites and clinoptilolites Amer. Mineral. 57 14481462.Google Scholar
Alietti, A. Brigatti, M. F. and Poppi, L., (1975) The differential thermal and thermogravimetric behavior of minerals of the heulandite group Rend. Soc. Ital. Mineral. Petrol. 31 613630.Google Scholar
Barrer, R. M. and Cram, P. J., (1971) Heats of immersion of outgassed ion-exchanged zeolites Molecular Sieve Zeolites II 105131.CrossRefGoogle Scholar
Boles, J. R., (1972) Composition, optical properties, cell dimensions, and thermal stability of some heulandite-group zeolites Amer. Mineral. 57 14631493.Google Scholar
Breger, I. A. Chandler, J. C. and Zubovic, P., (1970) An infrared study of water in heulandite and clinoptilolite Amer. Mineral. 55 825840.Google Scholar
Fisher, J. R. and Zen, E., (1971) Thermochemical calculations from hydrothermal phase equilibrium data and the free energy of H2O Amer. J. Sci. 270 297314.CrossRefGoogle Scholar
Foster, M. D., (1965) Studies of the zeolites U.S. Geol. Surv. Prof. Pap. 504–DE D17.Google Scholar
Grim, R. E., (1968) Clav Mineralogy 2nd ed. New York McGraw-Hill 234352.Google Scholar
Guenot, J. and Manoli, J. M., (1969) Thermogravimetry of solid-gas systems. III—Thermogravimetry of salt hydrates. Influence of low pressures Bull. Soc. Chim. Fr. 26632665.Google Scholar
Hawkins, D. B., (1974) Statistical analyses of the zeolites clinoptilolite and heulandite Contr. Mineral. Petrol. 45 2736.CrossRefGoogle Scholar
Knowlton, G. D. and McKague, H. L., (1976) A study of the water content in zeolitic tuffs, from the Nevada Test Site Univ. Cal. Radiation Lab. Rept. 78013 115.Google Scholar
Koizumi, M., (1953) The differential thermal analysis curves and the dehydration curves of zeolites Mineral. J. (Japan) 1 3647.CrossRefGoogle Scholar
Koizumi, M., (1958) On zeolite water Science Reports 7 115129.Google Scholar
Koyama, K. and Takeuchi, Y., (1977) Clinoptilolite: the distribution of potassium atoms and its role in thermal stability: Z. Kristallogr. 145 216239.Google Scholar
Mason, B. and Sand, L. B., (1960) Clinoptilolite from Patagonia. The relationship between clinoptilolite and heulandite Amer. Mineral. 45 341350.Google Scholar
McKague, H. L. Howard, N. W. and Ramspott, L. D., (1975) A method for measuring the powder density of hygroscopic minerals Abstracts with Program 7 629.Google Scholar
Merkle, A. B. and Slaughter, M., (1968) Determination and refinement of the structure of heulandite Amer. Mineral. 53 11201138.Google Scholar
Milligan, W. O. and Weiser, H. B., (1937) The mechanism of the dehydration of zeolites J. Phys. Chem. 41 10291040.CrossRefGoogle Scholar
Minato, H. and Utada, M., (1971) Clinoptilolite from Japan Molecular Sieve Zeolites I 101 311316.CrossRefGoogle Scholar
Morie, G. P. Powers, T. A. and Glover, C. A., (1972) Evaluation of thermal analysis equipment for the determination of vapor pressure and heat of vaporization Thermochim. Acta 3 259269.CrossRefGoogle Scholar
Mumpton, F. A., (1960) Clinoptilolite redefined Amer. Mineral. 45 351369.Google Scholar
Nicholson, G. C., (1967) The thermal decomposition of ferrous oxalate dihydrate J. Inorg. Nucl. Chem. 29 15991604.CrossRefGoogle Scholar
Shepard, A. O. and Starkey, H. C., (1966) The effects of exchanged cations on the thermal behavior of heulandite and clinoptilolite Mineral. Soc. India, Int. Mineral. Assoc. Vol. 155158.Google Scholar
Sheppard, R. A., (1971) Zeolites in sedimentary deposits of the United States—a review Molecular Sieve Zeolites I 101 279310.CrossRefGoogle Scholar
Van Reenwiijk, L. P., (1974) The thermal dehydration of natural zeolites Meded. Landbouwhogeschool Wageningen 74 188.Google Scholar
Vucelic, V. Vucelic, D. Karaulic, D. and Susie, M., (1973) Thermal quality analysis of water on synthetic zeolite type A Thermochim. Acta 7 7785.CrossRefGoogle Scholar
Vucelic, V. Vucelic, D. and Susie, M., (1974) Thermal analysis of water in X- and A-type zeolites Thermochim. Acta 8 465471.CrossRefGoogle Scholar
Wendlandt, W. W., (1974) Thermal Methods of Analysis New York Wiley.Google Scholar
Wise, W. S. Nokeleberg, W. J. and Kokinos, M., (1969) Clinoptilolite and ferrierite from Agoura, California Amer. Mineral. 54 887895.Google Scholar
Zen, E., (1971) Comments on the thermodynamic constants and hydrothermal stability relations of anthophyllite Amer. J. Sci. 270 136150.CrossRefGoogle Scholar