Hostname: page-component-77c89778f8-7drxs Total loading time: 0 Render date: 2024-07-19T05:35:03.467Z Has data issue: false hasContentIssue false

Weathering of Ilmenite in a Lateritic Pallid Zone

Published online by Cambridge University Press:  02 April 2024

R. R. Anand
Affiliation:
Department of Soil Science and Plant Nutrition, University of Western Australia, Nedlands, Western Australia 6009, Australia
R. J. Gilkes
Affiliation:
Department of Soil Science and Plant Nutrition, University of Western Australia, Nedlands, Western Australia 6009, Australia

Abstract

In a lateritic pallid zone ilmenite crystals alter via pseudorutile to porous leucoxene grains composed of randomly oriented aggregates of ~0.06 μm anatase crystals. This style of alteration differs from that in beach sands where parallel oriented rutile crystals develop from pseudorutile. Increased Si and Al in the altered grains is due to the crystallization from soil solution of halloysite, kaolinite and gibbsite within pores rather than to the incorporation of these elements into anatase crystals. Manganese was a significant constituent (3.2% Mn2O3) of the original ilmenite but was not retained by the leucoxene grains. The minor constituents Ni, Zn, Cu, Mg, Co and Ca were also lost, but Cr and V were retained.

Резюме

Резюме

В латеритовой бледной зоне кристаллы ильменита видоизменяются через псевдорутил в зерна пористого лейкоксена, состоящие из агрегатов беспорядочно ориентированных ~0,06 μm крис¬таллов анатаза. Этот тип видоизменения отличается от типа в пляжных песках, в которых парал¬лельно ориентированные кристаллы рутилов развиваются из псевдорутилов. Увеличенное содержание 81 и А1 в видоизмененных зернах обусловлено кристаллизацией галлуазита, каолинита и гиббсита из почвенного раствора внутри пор скорее, чем в результате включения этих элементов в кристаллы анатаза. Марганец являлся значительным составным элементом (3,2% Мn2О3) первоначального иль¬менита, но не удерживался зернами лейкоксена. Второстепенные составные элементы Ni, Zn, Сu, Мg, Со, и Са были также потеряны, но Cr и V удерживались. [E.G.]

Resümee

Resümee

In einer lateritischen palliden Zone wandeln sich Ilmenitkristalle über Pseudorutil in poröse Leucoxenkörner um, die aus Aggregaten von unregelmäßig angeordneten etwa 0,6 μm großen Anatas-kristallen bestehen. Diese Umwandlungsart unterscheidet sich von der in Küstensanden, wo sich parallel orientierte Rutilkristalle aus dem Pseudorutil bilden. Eine Zunahme des Si- und Al-Gehaltes in den umgewandelten Körnern rührt eher von der Kristallisation von Halloysit, Kaolinit und Gibbsit in den Poren aus der Porenlösung her als vom Einbau dieser Elemente in die Anataskristalle. Mangan war in beachtlichen Mengen (3,2% Mn2O3) im ursprünglichen Ilmenit enthalten, wurde aber durch die Leucoxenkörner nicht zurückgehalten. Die Spurenelemente Ni, Zn, Cu, Mg, Co, und Ca gingen ebenfalls verloren, während Cr und V zurückgehalten wurden. [U.W.]

Résumé

Résumé

Dans une zone ilménite latérite pâle, des cristaux sont altérés via la pseudorutile en grains leucoxènes poreux composés d'aggrégats de cristaux d'anatase de ~0,6 μm orientés au hasard. Ce style d'altération diffère de celui du sable de plage où des cristaux de rutile orientés parallèlement se développent à partir de la pseudorutile. L’élévation du contenu en Si et Al dans les grains altérés est due à la cristallisation à partir de solutions du sol d'halloysite, de kaolinite, et de gibbsite endéans les pores plutôt qu’à l'incorporation de ces éléments dans les cristaux anatase. La manganèse était un constituent significatif (3,2% Mn2O3) de l'ilménite originale, mais n'a pas été retenue par les grains leucoxènes. Les constituents mineurs Ni, Zn, Cu, Mg, Co, et Ca ont aussi été perdus, mais Cr et V ont été retenus. [D.J.]

Type
Research Article
Copyright
Copyright © 1984, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bailey, S. W., Cameron, E. M., Spedden, H. R. and Weege, R. J., 1956 The alteration of ilmenite in beach sands Econ. Geol. 51 263279.CrossRefGoogle Scholar
Brown, G., Brindley, G. W. and Brown, G., 1980 Associated minerals Crystal Structure of Clay Minerals and their X-ray Identification London Mineral. Soc 361411.CrossRefGoogle Scholar
Bykov, A. D., 1964 Proarizonite as a secondary mineral due to supergene alteration of ilmenite Dokl. Akad. Nauk S.S.S.R. 156 567570.Google Scholar
Campbell, A. S., 1973 Anatase and rutile determination in soil clays Clay Miner. 10 5758.CrossRefGoogle Scholar
Deer, W. A., Howie, R. A. and Zussman, J., 1962 Rock Forming Minerals, Vol. 5. Non-silicates London Longmans 2833.Google Scholar
Flinter, B. H., 1959 The alteration of Malayan ilmenite grains and the question of “arizonite” Econ. Geol. 54 720729.CrossRefGoogle Scholar
Frost, M. T., Grey, I. E., Harrowfield, I. R. and Mason, K., 1983 The dependence of alumina and silica contents on the extent of the alteration of weathered ilmenites from Western Australia Mineral. Mag. 47 201208.CrossRefGoogle Scholar
Gandolfi, G., 1967 Discussion upon methods to obtain X-ray powder patterns from a single crystal Mineral. Pe-trogra. Acta 13 6774.Google Scholar
Grey, I. E. and Reid, A. F., 1975 The structure of pseudorutile and its role in the alteration of ilmenite Amer. Mineral. 60 898906.Google Scholar
Hartman, J. A., 1959 The titanium mineralogy of certain bauxites and their parent minerals Econ. Geol. 54 13801405.CrossRefGoogle Scholar
Honjo, G., Kitamura, N. and Mihama, K., 1954 Study of clay minerals by single crystal electron difiraction diagrams—The structure of tubular kaolin Clay Miner. Bull. 2 131141.CrossRefGoogle Scholar
Karkhanavala, M. D., 1959 The nature of arizonite Econ. Geol. 54 13021308.CrossRefGoogle Scholar
Lee, R. F. and McConchie, D. M., 1982 Comprehensive major and trace element analysis of geological material by X-ray fluorescence, using low dilution fusion X-ray Spectrometry 11 5563.CrossRefGoogle Scholar
Loughnan, F. C. and Holding, H. G., 1957 The mineralogy of the commercial dyke clays in the Sydney district, New South Wales J. Proc. R. Soc. N.S.W. 91 8591.Google Scholar
Lynd, L. E., 1960 Alteration of ilmenite Econ. Geol. 55 10641070.CrossRefGoogle Scholar
Millot, G., 1970 Geology of Clays Berlin Springer-Verlag.CrossRefGoogle Scholar
Milnes, A. R. and Hutton, J. T., 1974 The nature of mi-crocryptocrystalline titania in silcrete skins from the Beda Hill area of South Australia Search 5 153154.Google Scholar
Palmer, C., 1909 Arizonite, ferric metatanate Amer. J. Sci. 28 353356.CrossRefGoogle Scholar
Ramdohr, P. (1980) The Ore Minerals and their Inter-growths: vol. 2 Pergamon Press, Oxford, 1207 pp.Google Scholar
Sadleir, S. B. and Gilkes, R. J., 1976 Development of bauxite in relation to parent material near Jarrahdale, Western Australia J. Geol. Soc. Aust. 23 333344.CrossRefGoogle Scholar
Temple, A. K., 1966 Alteration of ilmenite Econ. Geol. 61 695714.CrossRefGoogle Scholar
Teufer, G. and Temple, A. K., 1966 Pseudorutile, a new mineral intermediate between ilmenite and rutile in the natural alteration of ilmenite Nature 211 179181.CrossRefGoogle Scholar
Van Houten, F. B., 1968 Iron oxides in red beds Bull. Geol. Soc. Amer. 79 399416.CrossRefGoogle Scholar
Vegard, L., 1916 Results of crystal analysis Phil. Mag. Ser. 632 505.CrossRefGoogle Scholar
Vogel, A. I., 1961 A Textbook of Quantitative Inorganic Analyses London Longmans.Google Scholar