Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-19T04:45:16.195Z Has data issue: false hasContentIssue false

Effect of Acidity in Montmorillonite Interlayers on the Sorption of Aniline Derivatives

Published online by Cambridge University Press:  01 July 2024

S. Yariv
Affiliation:
Department of Geology, The Hebrew University, Jerusalem, Israel
L. Heller
Affiliation:
Department of Geology, The Hebrew University, Jerusalem, Israel
N. Kaufherr
Affiliation:
Department of Inorganic and Analytical Chemistry, The Hebrew University, Jerusalem, Israel

Abstract

Sorption of aniline and its derivatives by montmorillonite substituted by cations of widely different acidity depends upon the polarizing power of the interlayer cations. Infra-red spectra indicate that the anilines are mostly bound to the interlayer cations through water molecules, except in Cs montmorillonite, where bonding to the oxygen surfaces of the alumino-silicate sheets seems to predominate. Anilines are weak bases, which compete with the oxygen surfaces for protons of acidic interlayer water. Consequently, the tendency of anilines to act as proton donors in the clay interlayers increases with the polarizing power of the exchangeable cation. The concept of ‘basic’ water is introduced to account for some of the features of the spectra of Cs montmorillonite treated with the organic ligands.

Kurzreferat

Kurzreferat

Die Sorption von Anilin und seinen Derivaten durch Montmorillonit, das mit Kationen sehr verschiedener Azidität substituiert ist, hängt von der Polarisierleistung der Zwischenschicht-Kationen ab. Infrarotspektren deuten darauf hin, daß die Aniline im wesentlichen durch Wassermoleküle mit den Zwischenschicht-Kationen verbunden sind, außer bei Cs Montmorillonit, wo die Bindung an den Sauerstofflächen der Aluminium-Silikatladen vorzuherrschen scheint. Aniline sind schwache Basen, die ebenso wie die Sauerstofflächen Protone saueren Zwischenschichtwassers anziehen. Die Neigung der Aniline als Protonspender in den Tonzwischenschichten zu wirken, nimmt daher mit der Polarisierleistung des austauschbaren Kations zu. Der Begriff “basisches” Wasser wird eingeführt, um einige der Merkmale der Spektren von Cs Montmorillonit, das mit organischen Bindern behandelt wurde, zu erklären.

Резюме

Резюме

Сорбция анилина и его производных монтмориллонитом с обменными катионами весьма различной кислотности зависит от поляризующей силы межслоевых катионов. Инфракрасные спектры показывают, что анилины большею частью связаны с межслоевыми катионами посредством молекул воды; исключение составляет Сs -монтмориллонит, в котором связь с кислородными поверхностями алюмосиликатных листов, по-видимому, преобладает. Анилины представляют слабые основания, которые, как и кислородные пове¬рхности, стремятся присоединить протоны кислотной межслоевой воды. Следовательно, тенденция анилинов действовать в качестве протонных доноров в межслоевых промежутках глинистых минералов возрастает с увеличением поляризующей силы обменного катиона. Предложено понятие об ’основной’ воде для характеристики некоторых особенностей спектров Сз -монтмориллонита, обработанного органическими лигандами.

Type
Research Article
Copyright
Copyright © 1969, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

The results obtained for aniline associations in this study are more accurate than those previously reported (Yariv et al., 1968) due to the more powerful grating instrument now available, which permits more accurate assessment of the positions and relative intensities of the peaks.

References

Farmer, V. S. and Mortland, M. M. (1966) An i.r. study of the coordination of pyridine and water to exchangeable cations in montmorillonite and saponite: J. chem. Soc. A 344351.Google Scholar
Fripiat, J. J., Chaussidon, J. and Touillaux, R. (1960) Study of dehydration of montmorillonite and vermiculite by i.r. spectroscopy: J. Phys. Chem. 64, 12341241.CrossRefGoogle Scholar
Fripiat, J. J. (1963) Surface properties of alumino-silicates: Clays and Clay Minerals, Pergamon Press, New York, 12, 327358.Google Scholar
Grim, R. E. (1968) Clay Mineralogy: McGraw-Hill, New York, 260 pp.Google Scholar
Heller, L. and Yariv, S. (1969) Sorption of some anilines by Mn-, Co-, Ni-, Cu-, Zn- and Cd montmorillonite: Proc. Intern. Clay Conf. Vol. I, in press.Google Scholar
Lippincott, E. R. and Khanna, R. K. (1965) A study of hydrogen bonds in some addition compounds of glycine: 12th Colloq. Spectroscopic. Intern. Exeter. Hilger and Watts, 513522.Google Scholar
Mackenzie, R. C. (1964) Hydrationseigenschaften von Montmorillonit: Ber. Deut. Keram. Ges. 41, 696708.Google Scholar
Mortland, M. M. (1968) Protonation of compounds at clay mineral surfaces: Trans 9th Intern. Congr. Soil Sci. 1, 691699.Google Scholar
Mortland, M. M. and Raman, K. V. (1968) Surface acidity of smectites in relation to hydration, exchangeable cation and structure: Clays and Clay Minerals 16, 393398.CrossRefGoogle Scholar
Peri, J. B. (1965) Infra-red study of adsorption of ammonia of dry γ alumina: J. Phys. Chem. 69, 23 1239.CrossRefGoogle Scholar
Russell, J. D. and Farmer, V. C. (1964) Infra-red spectroscopic study of the dehydration of montmorillonite and saponite: Clay Minerals Bull. 5, 443464.CrossRefGoogle Scholar
Yariv, S., Heller, L., Sofer, Z. and Bodenheimer, W. (1968) Sorption of aniline by montmorillonite: Israel J. Chem. 6, 741756.CrossRefGoogle Scholar