Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-16T18:56:22.119Z Has data issue: false hasContentIssue false

Experimental Transformation of 2M Sericite into a Rectorite-Type Mixed-Layer Mineral by Treatment with Various Salts. II. Experiments Using a Magnetic Stirrer and a Centrifuge

Published online by Cambridge University Press:  01 July 2024

Katsutoshi Tomita*
Affiliation:
Institute of Earth Sciences, Kagoshima University, Kagoshima, Japan

Abstract

Dehydroxylated sericites were stirred in the various salt solutions, or washed several times with various salt solutions using a centrifuge. By these treatments a seriate of the 2M type was easily transformed into an interstratified mineral of the rectorite type when a sericite was treated with sodium salts, and random mixed-layer mineral was formed from 1M sericite. The formation of a rectorite-type mixed-layer mineral from 2M sericite can be explained by the (OH) bond direction after the extraction of the potassium ions.

Резюме

Резюме

Дегидроксилированные серициты были перемешаны в различных соляных растворах или промыты несколько раз различными соляными растворами с использованием центрифуги. В результате таких обработок серицит типа 2M был легко преобразован в слоистый минерал типа ректорита при обработке солями натрия и сложный смешанно-слойный минерал был образован из серицита 1M. Формирование смешанно-слойного минерала типа ректорита из серицита 2M может быть объяснено изменением направления связи /ОН/ после экстракции иона калия.

Kurzreferat

Kurzreferat

Dehydroxylierte Serikiten wurden in verschiedenen Salzlösungen gemischt oder etliche Male mit verschiedenen Salzlösungen in einer Zentrifuge gewaschen. Durch Behandlungen mit Natriumsalzen, wurde ein Serikit der 2M Type sehr einfach in ein interstratifiziertes Mineral übergeführt; und ein wahllos-gemischte-Schicht Mineral wurde von 1M Serikit geformt. Die Bildung eines Rektoriten-Typ, gemischte-Schicht Minerals von 2M Serikit, kann durch die OH-Bindungsdirektion nach der Extraktion der Kaliumionen, erklärt werden.

Résumé

Résumé

Des séricites déshydroxylatées ont été mélangées dans des solutions de sel variées, ou bien lavées plusieurs fois avec des solutions de sel variées au moyen d'un centrifuge. Ces traitements ont facilement transformé une séricite de type 2M en un minéral interstratifié du type rectorite quand la séricite était traitée avec des sels de sodium, et un minéral à feuillets mélangés fortuitement a été formé à partir de la séricite 1-M. La formation dun minéral à feuillets mélangés du type rectorite à partir d'une séricite 2M s'explique par la direction du pont OH après l'extraction de l’ ion de potassium.

Type
Research Article
Copyright
Copyright © 1978, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barshad, I. (1948) Vermiculite and its relation to biotite as revealed by base exchange reactions, X-ray analysis, differential thermal curves and water content: Am. Mineral. 33, 655678.Google Scholar
Barshad, I. and Kishk, F. M. (1968) Oxidation of ferrous iron in vermiculite and biotite alters fixation and replaceability of potassium: Science 162, 14011402.CrossRefGoogle ScholarPubMed
Barshad, I. and Kishk, F. M. (1970) Factors affecting potassium fixation and cation exchange capacities of soil vermiculite clays: Clays & Clay Minerals 18, 127137.CrossRefGoogle Scholar
Bassett, W. A. (1960) Role of hydroxyl orientation in mica alteration: Geol. Soc. Am. Bull. 71, 449456.CrossRefGoogle Scholar
Brindley, G. W. and Sandalaki, Z. (1963) Structure, composition and genesis of some long-spacing mica-like minerals: Am. Mineral. 48, 138148.Google Scholar
Caillère, S., Henin, S. and Guennelon, R. (1949) Transformation expérimentale du mica en divers types de minéraux argileux par séparation des feuilletes: C. R. Acad. Sci., Paris, 228, p. 1741.Google Scholar
Cole, W. F. and Lancucki, C. J. (1966) Tabular data of layer structure factors for clay minerals: Acta Crystallogr. 21, 836838.CrossRefGoogle Scholar
De Mumbrum, L. E. (1959) Exchangeable potassium levels in vermiculite and K-depleted micas and implications relative to potassium levels in soils: Soil Sci. Soc. Am. Proc. 23, 192194.CrossRefGoogle Scholar
De Mumbrum, L. E. (1963) Conversion of mica to vermiculite by potassium removal: Soil Sci. 96, 275276.CrossRefGoogle Scholar
Eberl, D. and Hower, J. (1977) The hydrothermal transformation of sodium and potassium smectite into mixed-layer clay: Clays & Clay Minerals 25, 215227.CrossRefGoogle Scholar
Farmer, V. C., Rusell, J. D., McHardy, W. J., Newman, A. C. D., Ahlrich, J. L. and Rimsaite, J. Y. H. (1971) Evidence for loss of protons and octahedral iron from oxidized biotites and vermiculites: Mineral. Mag. 38, 137.CrossRefGoogle Scholar
Giese, R. F. Jr. (1971) Hydroxyl orientation in muscovite as indicated by electrostatic energy calculations: Science 172, 263264.CrossRefGoogle ScholarPubMed
Giese, R. F. Jr. (1972) In “General discussion of K-exchange in micas”: Proc. Int. Clay Conf., Madrid, 1972, pp. 494495.Google Scholar
Gilkes, R. J., Young, R. C. and Quirk, J. P. (1972) Oxidation of octahedral iron in biotite: Clays & Clay Minerals 20, 303315.CrossRefGoogle Scholar
Hanway, J. J. (1956) Fixation and release of ammonium in soils and certain minerals: Iowa State Coll. J. Sci. 30, 374375.Google Scholar
Iiyama, J. T. and Roy, R. (1963) Controlled synthesis of heteropolytypic (mixed-layer) clay minerals. Clays & Clay Minerals 10, 422.Google Scholar
Juo, A. S. R. and White, J. L. (1969) Orientation of dipole moments of hydroxyl groups in oxidized and unoxidized biotite: Science 165, 804805.CrossRefGoogle ScholarPubMed
MacEwan, D. M. C. (1956) Fourier transform methods for studying scattering from lamellar systems I. A direct method for analysing interstratified mixtures: Kolloid Z. 149, 96108.CrossRefGoogle Scholar
Mamy, J. (1970) Extraction of interlayer K from phlogopite. Specific effects of cations. Role of Na and H concentrations in extraction solution: Clays & Clay Minerals 18, 157163.CrossRefGoogle Scholar
Matsuda, T. and Henmi, K. (1974) Syntheses of interstratified minerals from kaolin with addition of various cations: Kōbutsugaku Zasshi 11, 152161.Google Scholar
Méring, J. and Glaeser, R. (1954) Sur le rôle de la valence des cations échangeables dans la montmorillonite: Bull. Soc. Fr. Mineral. Cristallogr. 77, 519530.Google Scholar
Mortland, M. M. (1958) Kinetics of potassium release from biotite: Soil Sci. Soc. Am. Proc. 22, 503508.CrossRefGoogle Scholar
Norrish, K. (1972) Factors in the weathering of mica to vermiculite: Proc. Int. Clay Conf., Madrid, 1972, pp. 417432.Google Scholar
Oinuma, K. and Hayashi, H. (1965) Infrared study of mixed-layer clay minerals: Am. Mineral. 50, 12131227.Google Scholar
Rausell-Colom, J. A., Sweatmen, C. B., Wells, C. B. and Norrish, K. (1965) In Experimental Pedology (Edited by Hodsworth, E. G. and Crawford, D. V.) , pp. 472. Buttersworths, London.Google Scholar
Reichenbach, H. Graf Von and Rich, C. I. (1969) Potassium release from muscovite as influenced by particle size: Clays & Clay Minerals 17, 2329.CrossRefGoogle Scholar
Robert, M. (1973) The experimental transformation of mica toward smectite; Relative importance of total charge and tetrahedral substitution: Clays & Clay Minerals 21, 167174.CrossRefGoogle Scholar
Robert, M. and Pedro, G. (1968) Influence de l'oxydation thermique des biotites sur l'extraction du potassium (vermiculitisation): C. R. Acad. Sci., Paris, 267, 18051807.Google Scholar
Ross, G. J. and Rich, C. I. (1974) Effect of oxidation and reduction on potassium exchange of biotite: Clays & Clay Minerals 22, 355360.CrossRefGoogle Scholar
Scott, A. D., Hunziker, R. R. and Hanway, J. J. (1960) Chemical extraction of potassium from soils and micaceous minerals with solutions containing sodium tetraphenylboron I. Preliminary experiments: Soil Sci. Soc. Am. Proc. 24, 191194.CrossRefGoogle Scholar
Scott, A. D. and Reed, M. G. (1962a) Chemical extraction of potassium from soils and micaceous minerals with solutions containing sodium tetraphenylboron II. Biotite: Soil Sci. Soc. Am. Proc. 26, 4145.CrossRefGoogle Scholar
Scott, A. D. and Reed, M. G. (1962b) Chemical extraction of potassium from soils and micaceous minerals with solutions containing sodium tetraphenylboron III. Illite: Soil Sci. Soc. Am. Proc. 26, 4548.CrossRefGoogle Scholar
Scott, A. D. and Smith, S. J. (1967) Visible changes in macro mica particles that occur with potassium depletion: Clays & Clay Minerals, Proc. 15th Nat. Conf. pp. 357373, Pergamon Press, Oxford.Google Scholar
Serratosa, J. M. and Bradley, W. F. (1958) Determination of the orientation of OH bond axes in layer silicates by infrared absorption: J. Phys. Chem. 62, 11641167.CrossRefGoogle Scholar
Shutov, V. D., Drits, V. A. and Sakharov, B. A. (1969) On the mechanism of a postsedimentary transformation of montmorillonite into hydromica: Proc. Int. Clay Conf., 1969, Vol. 1, 523531.Google Scholar
Sudo, T., Hayashi, H. and Shimoda, S. (1962) Mineralogical problems of intermediate clay minerals: Clays & Clay Minerals, 9th National Conf. pp. 378392, Pergamon Press, Oxford.CrossRefGoogle Scholar
Tomita, K. (1974) Similarities of rehydration and rehydroxylation properties of rectorite and 2M clay micas: Clays & Clay Minerals 22, 7985.CrossRefGoogle Scholar
Tomita, K. (1977) Experimental transformation of 2M sericite into a rectorite-type mixed-layer mineral by treatment with various salts: Clays & Clay Minerals 25, 302308.CrossRefGoogle Scholar
Tomita, K. and Dozono, M. (1972) Formation of an interstratified mineral by extraction of potassium from mica with sodium tetraphenylboron: Clays & Clay Minerals 20, 225231.CrossRefGoogle Scholar
Tomita, K. and Sudo, T. (1968a) Interstratified structure formed from a pre-heated mica by acid treatments: Nature 217, 10431044.CrossRefGoogle Scholar
Tomita, K. and Sudo, T. (1968b) Conversion of mica into an interstratified mineral: Rep. Fac. Sci. Kagoshima Univ. 1, 89119.Google Scholar
Tomita, K. and Sudo, T. (1971) Transformation of sericite into an interstratified mineral: Clays & Clay Minerals 19, 263270.CrossRefGoogle Scholar
Ueda, S. and Sudo, T. (1966) Synthesis of an interstratified mineral from mica: Nature 211, 13931394.CrossRefGoogle Scholar
White, J. L. (1956) Layer charge and interlamellar lattice silicates: Clays & Clay Minerals 4, 133146.Google Scholar
White, J. L. (1958) Layer charge and interlamellar expansion in a muscovite: Clays & Clay Minerals 5, 289294.Google Scholar